Что такое клапан двигателя

Содержание

Что такое клапан двигателя

Это деталь двигателя и одновременно крайнее звено газораспределительного механизма. Клапанная группа включает в себя: пружину, направляющую втулку, седло, механизм крепления пружины. Все эти детали работают в тяжёлых механических и тепловых условиях, испытывая колоссальные нагрузки.

Сопряжение седло-клапан, подвергается наибольшему воздействию высоких температур и ударных нагрузок. Кроме того, детали постоянно испытывают недостаток в смазке по причине высоких скоростей работы. Это вызывает их интенсивный износ.

Требования, предъявляемые к группе:

  • Герметичность работы клапана в сопряжении с седлом;
  • Высокий коэффициент обтекаемости, при входе и выходе рабочей смеси из камеры сгорания;
  • Небольшой вес деталей группы;
  • Детали должны быть высокопрочными и одновременно жёсткими;
  • Стойкость к высоким температурам;
  • Эффективная теплоотдача клапанов;
  • Высокое сопротивление механическим и ударным нагрузкам;
  • Противодействие коррозии.

Работа клапанов двигателя

Назначение и особенности устройства

Назначение клапана, открывать и закрывать отверстия в головке блока цилиндров для выпуска отработанных газов либо впуска новой рабочей смеси. К основным элементам детали относятся головка и стержень. Переход от стержня к головке служит для плавного отвода газов, чем он плавней, тем лучше будет наполнение, либо очистка камеры сгорания.

Отработанные газы, выходя из камеры сгорания, создают сильное избыточное давление, а чем меньше площадь тарелки клапана, тем меньшие нагрузки он испытывает, вот почему выпускной клапан двигателя делается меньшего диаметра, а требования к нему выше. Так, при работе, головка выпускного клапана нагревается до 800-900.°С на бензиновых двигателях и до 500-700°С на дизельных моторах, впускной, нагревается до 300°С.

Именно по этим причинам при изготовлении выпускных клапанов нужны сплавы и материалы, обладающие повышенной жаропрочностью и содержащие большое количество легирующих присадок. Клапана делают из 2-х частей: головку из жаростойкого материала, стержень из углеродистой стали. Для изготовления клапана ДВС эти заготовки сваривают и шлифуют.

Выпускные клапана, в месте контакта с цилиндром, покрывают твёрдым сплавом. Толщина сплава порядка 1,5-2,5 мм. Такое покрытие позволяет избежать коррозии.

По причине меньших нагрузок при изготовлении впускных клапанов используют хромистые или хромоникелевые стали со средним содержанием углерода. При вводе рабочей жидкости в камеру сгорания, топливо отводит часть температуры от клапана и его составляющих, из-за чего температурные перепады у него ниже.

На эффективность работы клапана большое влияние оказывает его форма. Чем более она обтекаемая, тем выше скорость входящего или выходящего заряда смеси. Чаще всего головку клапана делают плоской, для облегчения изготовления детали, удешевления её производства и сохранения жёсткости.

Однако, в двигателях, испытывающих повышенные нагрузки, например, форсированных, в связи со спецификой самого двигателя применяют впускные клапана с вогнутыми головками. Такое устройство уменьшает массу детали и инерционную силу, возникающую при работе.

Стыковка клапана с седлом осуществляется по тонкому ободку на поверхности головки цилиндров — фаске. Стандартный угол наклона фаски впускных клапанов составляет 45°, у выпускных 45° или 30°. При изготовлении головок цилиндра фаски шлифуют, а затем, при установке клапана, каждый притирают к седлу. Ширина ободка должна быть не менее 0,8мм.

Работа клапанов двигателя

Ободок не должен прерываться по всему периметру окружности тарелки клапана. Сочленение между клапаном и седлом нужно уплотнить наверняка, вот зачем угол фаски клапана, по наружной стороне фаски, делают меньше угла седла на 0,5-1°.

В некоторых двигателях, для большей сохранности изделия, применяют устройство принудительного вращения клапана. В процессе работы на фасках откладывается нагар, нарушается уплотнение, появляются механические повреждения, это резко снижает эффективность работы мотора. Проворачиваясь, клапан ДВС распределяет нагрузку равномерно по всей поверхности фаски и принудительно очищает ее.

После фаски головки, у клапана имеется специальный поясок, в виде цилиндра. Эта конструктивная особенность позволяет уберечь его от перегрева и обгорания, а так же делает головку более жёсткой. Кроме того, при притирке, диаметр клапана остаётся прежним.

Пружинное стопорное кольцо предотвращает падение клапана в камеру сгорания двигателя, в случае, если элементы крепления хвостовика поломаются.

При соприкосновении с кулачком распределительного вала, или коромыслом, торцы клапана подвергаются большим нагрузкам. Поэтому для предания им жёсткости и износостойкости, их закаливают, или надевают на них специальные колпачки из высокопрочных сплавов.

Впускные клапана снабжают специальными резиновыми маслосъёмными колпачками, для предотвращения попадания через зазор масла в камеру сгорания в период такта впуска.

Выпускные клапана, работая в экстремальных температурных режимах, могут заклинить в отверстии направляющей втулки. Что бы этого не произошло, их стержни делают меньшего диаметра вблизи головки, по сравнению с поверхностью на остальной длине.

Сухарики, удерживающие клапанные пружины, держатся за сам клапан при помощи крепления, обеспеченного выточками.

Диаметр стержня выпускных клапанов больше диаметра стержня впускных, головка клапана — меньше. Такой конструктивный приём позволяет отвести от клапана больше тепла и понизить его температуру. Однако этот приём увеличивает сопротивление потока газов, делая очистку камеры сгорания менее эффективной. При расчётах, этот параметр сложно узнать, поэтому им пренебрегают, считая давление при выпуске большим, чем давление при впуске, что компенсирует недостаток с лихвой.

Для увеличения эффекта охлаждения выпускного клапана внутри его делают пустотелым. Пустое пространство заполняют металлом с низкой температурой плавления, обычно жидким натрием. Нагреваясь от головки клапана, пары жидкого натрия поднимаются в верхнюю, боле холодную часть, забирая большую часть тепла с собой. Там они соприкасаются с менее нагретой частью стержня и отдают тепло ей.

Клапаны двигателя

Пружины клапана

Пружина работает в условиях больших нагрузок. Основная её задача заключается в создании надёжной и плотной стыковки клапана и седла. Испытывая нагрузки, пружина может сломаться, зачастую это происходит по причине вхождения её в резонанс. С целью предотвращения этого явления, витки пружины делают с переменным шагом.

Так же можно изготовить коническую или двойную пружину. Двойные пружины обладают дополнительным плюсом, так как наличие двух деталей повышает надёжность механизма и уменьшает общий размер пружин.

Дабы исключить возможность резонанса в двойной пружине, направление витков внутренней и внешней пружин делают разными. Так же это позволяет удержать обломки детали, в случае поломки пружины, осколки задержатся между витками.

Пружины для клапанов изготавливают из проволоки, материал которой — сталь. После придания формы, изделие закаляют и подвергают отпуску. Для повышения прочности, обдувают воздухом с добавлением абразивного материала.

Что бы избежать коррозии, пружины обрабатывают оксидом цинка или кадмия. Концы пружин шлифуют и придают им плоскую форму. Это делается для более эффективной фиксации торцов пружин со специальными неподвижными тарелками в блоке цилиндров. Тарелки изготавливают из стали с низким содержанием углерода, верхнюю тарелку фиксируют на клапане при помощи сухарика.

Втулки клапанов и их направляющие

Отвод тепла от стержня клапана и его перемещение в возвратно поступательной плоскости обеспечивают направляющие втулки. В процессе работы сами втулки подвергаются воздействию высоких температур, омываясь горячими отработанными газами. При возвратно поступательном движении клапана между ним и поверхностью втулки возникает трение. Если смазки поступает не достаточно, то трение идёт практически на сухую.

Именно по этой причине к материалу втулок применяют ряд требований, таких, как: стойкость к износу, высоким температурам, трению. Некоторые составы чугуна, алюминиевая бронза, керамика обладают всеми свойствами, необходимыми для создания детали, удовлетворяющей таким требованиям.

Для впускных клапанов, в связи с разницей в температуре нагрева, зазоры между направляющей втулкой и стержнем делаются меньше. Нижнюю часть втулки делают под конус для предотвращения заклинивания клапана.

Направляющие втулки клапанов

Выточки под клапана (седла)

Долговечность и правильная работа двигателя внутреннего сгорания напрямую зависят от качества изготовления выточки под клапана. При неправильной стыковке клапана и седла не будет обеспечиваться должная герметичность камеры сгорания, и скорый выход мотора из строя неизбежен. Седла изготавливают непосредственно в головке цилиндра, в данном случае речь идёт о чугунных головках. Либо делают их вставными, из стали, например, в алюминиевых головках.

Вставные седла удерживаются в головке путём запрессовки, или развальцовки.

Количество клапанов в двигателе

Когда речь заходит о клапанах, многие задаются вопросом: «сколько клапанов в двигателе должно быть?» Однозначного ответа нет, определить чёткое количество можно только изучив конструктивные особенности мотора. Учитывая, что в четырёхтактной силовой установке клапан осуществляет такты впуска и выпуска, значит минимальное количество на один цилиндр — два, один впускной и один выпускной.

Современные силовые установки наиболее часто используют конструкцию с четырьмя клапанами (двух впускных и двух выпускных) на каждый цилиндр. При открытии клапана в образовавшееся отверстие происходит заброс топливной смеси, или выход отработанных газов. Чем больше отверстие, тем эффективней будет наполнение или очистка. Соответственно коэффициент полезного действия мотора так же увеличится.

Увеличить отверстие за счёт увеличения тарелки клапана нельзя, поскольку её размер ограничен размером камеры сгорания. Поэтому для улучшения качества смесеобразования устанавливают большее количество клапанов на один цилиндр.

Встречаются схемы, в которых применяются два, три, и даже пять клапанов на цилиндр. Учитывая, что процесс наполнения более важен для работы двигателя, количество впускных клапанов в нечётных схемах всегда больше.

Клапаны двигателя: конструктивные особенности и назначение

Что такое клапан двигателя

Клапанный механизм – это основной исполнительный компонент ГРМ (газораспределительный механизм) современного двигателя внутреннего сгорания (ДВС). Именно этот узел отвечает за безупречно точную работу мотора и обеспечивает в процессе работы:

  • своевременную подачу подготовленной топливовоздушной смеси в камеры сгорания цилиндров;
  • последующий отвод выхлопных газов.
Читать статью  Гнет клапана: причины и последствия, на каких двигателях может произойти

Клапаны – ключевые детали механизма, которые должны гарантировать полную герметизацию камеры сгорания при воспламенении в ней топлива. Во время работы мотора они испытывают постоянно высокую нагрузку. Вот почему к процессу их изготовления, а также особенностям конструкции, регулировкам и непосредственно самой работе клапанов ДВС предъявляются жесткие требования.

Общее устройство

Для нормальной работы двигателя в конструкции газораспределительного механизма предусмотрена установка двух типов клапанов: впускных и выпускных. Первые отвечают за пропуск в камеру сгорания топливовоздушной смеси, вторые – за отвод отработанных газов.

Клапанная группа (одновременно является оконечным элементом системы ГРМ) включает в себя основные детали:

  • стальная пружина;
  • устройство (механизм) для крепления возвратного механизма;
  • втулка, направляющая движение;
  • посадочное седло.

Эксперты MotorPage.Ru обращают внимание автовладельцев на тот факт, что именно сопряжение «седло-клапан» при работе мотора подвергается самой высокой степени воздействия экстремальных температур и разнонаправленным (вверх, вниз, в стороны) механическим нагрузкам.

Кроме того, из-за скоростной работы образуется недостаточное количество смазки. В результате – интенсивный износ и необходимость проведения ремонта двигателя, замены и установки новых деталей ГРМ с последующей регулировкой зазоров.

К каждой паре и группе клапанов предъявляются следующие требования:

  • минимально возможный вес;
  • антикоррозийная устойчивость;
  • безупречная теплоотдача клапана;
  • устойчивость к высоким температурам;
  • герметичность работы при контакте с седлом;
  • повышенная механическая прочность и жесткость одновременно;
  • отличный показатель стойкости к механическим и ударным нагрузкам;
  • максимальный уровень обтекаемости при поступлении рабочей смеси в камеру сгорания и выпуске отработанных газов.

Что такое клапан двигателя

Конструктивные особенности

Главное предназначение клапана – своевременное открывание и закрывание технологических отверстий в блоке цилиндров для выпуска отработанных газов и впуска очередной порции топливовоздушной смеси.

В процессе работы двигателя основание выпускного клапана нагревается до высоких температур. У бензиновых моторов этот параметр достигает 800 — 900°С, у дизельных силовых агрегатов – 500 — 700°С. Впускные работают при температуре порядка 300°С.

Чтобы обеспечить необходимый уровень устойчивости к таким нагрузкам, для изготовления выпускных клапанов используют специальные жаропрочные сплавы и материалы, содержащие большое количество легирующих присадок.

Конструктивно деталь состоит из двух частей:

  • головка, изготавливаемая из материала, устойчивого к экстремальным нагревам;
  • стержень из высококачественной легированной углеродистой стали.

Для защиты от коррозии поверхность выпускных клапанов в местах контакта с цилиндром покрывается специальным сплавом толщиной 1,5 – 2,5 мм.

К впускным клапанам требования не столь жесткие, поскольку в процессе работы двигателя они охлаждаются свежей топливовоздушной смесью. Для изготовления стержней используются низколегированные марки сплавов с повышенными параметрами прочности, а тарелки делают из жаропрочных сталей.

Требования к изготовлению пружин и втулок

Пружины. В системе ГРМ эта деталь работает в условиях экстремально высоких температурных и механических нагрузок. Задача – обеспечить плотный и надежный контакт между клапаном и седлом в момент их стыковки.

Нередко в процессе работы пружины ломаются, испытывая повышенные нагрузки, зачастую это происходит по причине вхождения ее в резонанс. Как отмечают эксперты Моторпейдж, риск подобных неисправностей гораздо ниже при использовании пружин с переменным шагом витков. Также достаточно эффективны конические или двойные (усиленные) модели.

Пружины для клапанов изготавливают из специальной легированной стальной проволоки. Ее закаляют и подвергают отпуску (технологические операции, используемые в металлургическом производстве). Защиту от коррозии обеспечивает дополнительная обработка оксидом цинка или кадмия.

Втулки. Обеспечивают отвод излишков тепловой энергии от стержня клапана, а также его перемещение в заданной (возвратно-поступательной) плоскости. Эти направляющие элементы системы постоянно омываются раскаленными парами и отработанными выхлопными газами. Функционируют также в условиях экстремальных температур.

Потому к материалу изготовления втулок тоже предъявляются высокие требования – хорошая износоустойчивость, стойкость к максимально допустимым температурам и трению. Данным запросам соответствуют некоторые виды чугуна, алюминиевая бронза, высокопрочная керамика. Именно эти материалы и используются для производства втулок.

Клапанный механизм двигателя, его устройство и принцип работы

Р 4 (Клапан трубного монтажа).jpg Р 5 (Клапан стыкового монтажа).jpg классификация клапанов Клапан двигателя. Назначение, устройство, конструкция Основной принцип работы классификация клапанов Р 7 (Модульная аппаратура CETOP).jpg Типы запорных элементов Что такое клапан двигателя Р 6 (клапан модульного монтажа).jpg Р 8 (обозначение предохранительных клапанов).jpg

СпецБорт

Стоимость ремонта двигателя с поврежденными клапанами

Двигатель с повреждёнными клапанами требует серьезного ремонта. Минимальная стоимость ремонта при поврежденных клапанах составляет 10 тысяч рублей и зависит от вида двигателя и того, сколько клапанов было повреждено.

Повреждения клапанов двигателя может приводить к различным дополнительным повреждениям узлов двигателя. Процесс обрыва ремня ГРМ, приводящий к повреждению клапанов, может приводить к катастрофическим последствиям для двигателя. В отдельных случаях потребуется его полная замена, что может составлять до 50% стоимости автомобиля.

Классификация по количеству клапанов

В классической версии четырехтактного двигателя для работы требуется только два клапана на цилиндр. Но к современным двигателям предъявляются все новые и новые требования с точки зрения мощности, расхода топлива и бережного отношения к окружающей среде, поэтому для них этого уже недостаточно. Поскольку чем больше клапанов, тем эффективнее будет заполнение цилиндра новым зарядом. В разное время на двигателях опробовали следующие схемы:

  • трехклапанные (впускных — 2, выпускной — 1);
  • четырехклапанные (впускных — 2, выпускных — 2);
  • пятиклапанные (впускных — 3, выпускных — 2).

Лучшее наполнение и очистка цилиндров достигается за счет большего количества клапанов на цилиндр. Но это усложняет конструкцию двигателя.

Сегодня наиболее популярны двигатели с 4-мя клапанами на цилиндр. Первый из этих двигателей появился в 1912 году на автомобиле Peugeot Gran Prix. В то время это решение не получило широкого распространения, но с 1970 года стали активно выпускаться серийные автомобили с таким количеством клапанов.

Клапанная группа

Завершающим звеном механизма газораспределения является клапанная группа, которая включает в себя клапан, пружину, детали крепления клапана и пружины, направляющую втулку и седло клапана.

Читайте также: Совет автоэксперта, как снять головку блока цилиндров на lada priora 16 клапанов

Что такое клапан двигателя

Клапанная группа работает при больших механических и тепловых нагрузках. Наиболее нагруженным является сопряжение «клапан-седло». Эти детали подвергаются наибольшим ударным воздействиям при посадке клапана в седло, и работают в условиях высоких температур.

Сопряжение «клапан-седло-направляющая втулка» работает при недостаточном смазывании и высокой скорости перемещения клапана, что вызывает их интенсивное изнашивание.

Исходя из условий, в которых работают детали этой группы ГРМ, к клапанной группе предъявляются следующие требования:

  • герметичное закрытие клапанов;
  • малое сопротивление рабочей смеси и отработавшим газам при впуске и выпуске (хорошая обтекаемость);
  • минимальная масса деталей;
  • высокая прочность и жесткость;
  • высокая тепловая стойкость;
  • эффективный отвод тепла от клапана (особенно для выпускного);
  • высокая износостойкость (особенно в сопряжении «втулка-клапан»);
  • высокая коррозийная стойкость в сопряжении «седло-клапан».

Клапаны

Клапаны открывают и закрывают впускные и выпускные отверстия в головке блока цилиндров. Основные элементы клапана: головка 12 и стержень 9 (рис. 1). Головку клапана иногда называют тарелкой клапана. Плавный переход от головки к стержню снижает сопротивление потоку газов при их истечении через газообменные отверстия. Поскольку отработавшие газы удаляются через выпускной клапан при значительном давлении, головку этого клапана обычно выполняют меньшего диаметра, чему головку впускного клапана. Температура головки выпускного клапана бензиновых двигателей достигает 800…900 ˚С, а в дизельных двигателях – 500…700 ˚С. Температурная нагрузка на головки впускных клапанов значительно ниже, тем не менее она приводит к нагреву тарелки клапана до 300 ˚С.

Поэтому для изготовления выпускных клапанов применяются жаропрочные сплавы и материалы, в качестве которых обычно используют жаропрочные стали с большим содержанием легирующих присадок. В целях экономии дорогостоящих жаростойких материалов выпускные клапаны изготовляют из двух частей. При этом для головки используется жаростойкий материал, а для стержня – углеродистые стали. Головка и стержень в данном случае соединяются между собой стыковой сваркой.

Для повышения коррозийной стойкости и уменьшения изнашивания в выпускных клапанах рабочие поверхности фаски, а в некоторых случаях и поверхность головки со стороны цилиндра наплавляют слоем твердого сплава толщиной 1,5…2,5 мм (рис. 1).

Что такое клапан двигателя Облегченный клапан Что такое клапан двигателя Что такое клапан двигателя Что такое клапан двигателя Что такое клапан двигателя Что такое клапан двигателя Что такое клапан двигателя Что такое клапан двигателя Что такое клапан двигателя Что такое клапан двигателя

Редукционные клапаны

Редукционный клапан относится к клапанам регулирования давления. Он устанавливается в гидросистему для поддержания давления в линии на более низком уровне, чем в основной линии. Иными словами, можно сказать, что редукционный клапан поддерживает давление на постоянном уровне «после себя», имея на входе более высокий уровень давления. Самым распространённым применением является поддержание давления в линии управления распределителями. Редукционные клапаны могут быть установлены в линиях питания гидродвигателей для ограничения в них давления и, как следствие, ограничения создаваемого двигателем усилия.
Согласно ГОСТ 2.781-96 редукционные клапаны на схемах обозначаются как показано на рисунке 11.

Р 11 (Обозначения редукционных клапанов).jpg

Схематично устройство редукционного клапана прямого действия изображено на рисунке 12. В корпусе 1 установлен конический запорный элемент 2, прижимаемый к корпусу пружиной 3. При давлении в линии А ниже настройки редукционного клапана рабочая жидкость беспрепятственно перетекает в линию А. После того, как усилие, создаваемое давлением на запорном элементе в линии А превысит усилие, создаваемое пружиной, запорный элемент смещаясь влево, перекроет ток рабочей жидкости из линии Р в А. При этом происходит дросселирование (понижение давления) жидкости на рабочей кромке, вызывая снижение давления в линии А, уравновешивая клапан в некотором положении. Для стабильного поддержания давления редукционным клапаном, полость пружины должна сообщаться с баком. Если в полости пружины создавать некоторое давление, то значение давления, поддерживаемое в линии А, будет увеличиваться прямопропорционально давлению в полости пружины. В этом случае речь идет о редукционном клапане с внешним управлением, а давление в полости пружины называют давлением управления.

Редукционные клапаны седельного типа (см. рис.12) обладают высокой скоростью срабатывания, что может привести к частым и сильным колебаниям давления. Для снижения колебаний давления применяют клапаны золотникового типа. Они обеспечивают более плавную характеристику без забросов давления, но не герметичны и имеют перетечку рабочей жидкости по зазору золотника. Редукционный клапан золотникового типа в рабочем положении показан на рисунке 13.

Читать статью  Как работают клапана двигателя

Для сохранения герметичности и обеспечения плавной характеристики применяются редукционные клапаны непрямого (двуступенчатого) действия. Устройство такого клапана показано на рисунке 14. К корпусу 1 пружиной 9 прижат основной запорный элемент 2. В запорном элементе имеется дроссельное отверстие 3. Рабочую полость А от линии слива Т отделяет пилотный клапан с запорным элементом 4, поджатым к седлу пружиной 5. Механизм регулировки поджатия пружины состоит из регулировочного винта 7 с контргайкой 10, опоры 6 и уплотнения 8.

Читайте также: Датчик температуры охлаждающей жидкости: замена своими руками, виды неисправностей

Р 14-2 (Редукционный клапан непрямого действия устройство).jpg Р 14-1 (Редукционный клапан непрямого действия устройство).jpg Р 13 (Редукционный клапан устройство (золотниковый тип)).jpg Р 12-3 (Редукционный клапан устройство).jpg Р 12-2 (Редукционный клапан устройство).jpg Р 12-1 (Редукционный клапан устройство).jpg

Работа клапана происходит следующим образом: при давлении в линии А ниже настройки срабатывания клапана, уровни давлений в рабочей полости и линии А одинаковы, основной запорный элемент прижат к корпусу пружиной 9. При достижении давлением значения настройки пилотного клапана, последний открывается, и рабочая жидкость проходя через дроссельное отверстие 3 устремляется в линию Т. При этом создается перепад давлений между линией А и рабочей полостью, воздействующий на запорный элемент 2 и преодолевающий усилие пружины 9, смещает запорный элемент 2 вверх, что приводит к уменьшению проходного сечения (седло-клапан), снижению давления в линии А и уравновешиванию клапана в некотором положении, обеспечивающем заданное давление в линии А.

При понижении давления в линии А клапан под воздействием пружины опускается, увеличивая проходное сечение седло-клапан, что приводит к увеличению давления в линии А и уравновешиванию клапана в новом положении.

Еще одной разновидностью редукционного клапана можно считать редукционно-предохранительный или трехходовой редукционный клапан. Его обозначение на принципиальных гидравлических схемах показано на рис. 15.

Р 15 (Трехлинейный редукцинно-предохранительный клапан обозначение).jpg

Принцип работы редукционно-предохранительного клапана показан на рисунке 16. В корпусе 1 установлены основные элементы: пружина 3 и золотник 2. Пока давление в линии А ниже чем в питающей линии Р клапан 2 находится в правом положении и свободно пропускает жидкость из линии Р в линию А. (см. рис. 16А). При повышении давления в линии Р выше настройки пружины 3, золотник 2 смещается влево и начинает дросселировать жидкость прикрывая окно линии P (см. рис. 16Б), вплоть до полного закрытия (рис. 16В). Если при полном закрытии давление в линии А продолжает расти, то золотник смещается еще левее, приоткрывает окно линии Т и начинает сбрасывать жидкость из линии А в слив (см. рис 16Г)

Р 16-2 (Трехлинейный редукцинно-предохранительный клапан устройство) (1).jpg

Обратные клапаны

Обратные клапаны относятся к клапанам управления расходом. Основным их назначением является пропускание потока рабочей жидкости в прямом и блокирование в обратном направлениях. Конструктивно обратные клапаны схожи с предохранительными, но не имеют механизма регулировки сжатия пружины, а часто и самой пружины.
Согласно ГОСТ 2.781-96 обратные клапаны на схемах обозначаются как показано на рис. 17.

Р 17 (обозначения обратных клапанов).jpg

Устройство простейшего обратного клапана соответствует показанному на рис.1а. Где жидкость имеет возможность проходить от линии P к линии Т, преодолев сопротивление пружины, которое эквивалентно значению из диапазона от 0,02 до 1МПа. При этом в обратном направлении жидкость пройти не может. Также распространены конструкции обратных клапанов без пружины.

Часто при проектировании гидросистемы появляется необходимость в применении обратного клапана способного пропускать поток жидкости в обратном направлении по внешнему сигналу управления. В таких случаях речь заходит об управляемых обратных клапанах.

Управляемые обратные клапаны называются гидрозамками и в соответствии с ГОСТ 2.781-96, имеют обозначения, показанные на рисунке 18:

Р 18 (обозначения гидрозамков).jpg

Схематично устройство гидрозамка изображено на рисунке 19. В корпусе 1 установлены управляющий поршень 4 и конический запорный элемент 2, прижимаемый к корпусу пружиной 3. Рабочим является закрытое положение клапана, при котором рабочая жидкость заперта в линии C2 (см. рис. 19А). Для принудительного открытия клапана давление подаётся в линию V1-C1. После того, как усилие на поршне 4, создаваемое давлением в полости V1-C1, превысит усилие на запорном элементе 2, создаваемое давлением в линии C2 и пружиной 3, поршень 4 переместится вправо и, смещая запорный элемент 2, откроет доступ жидкости из линии C2 в линию V2 (см. рис. 19Б). При подъеме нагрузки (см. рис. 19В) линия V2-C2 свободно пропускает жидкость к гидродвигателю (гидроцилиндру).

При определенных условиях в момент открытия гидрозамков в гидросистеме могут возникать ударные нагрузки, вызванные резким падением давления. Такие нагрузки отрицательно сказываются на большинстве элементов гидросистемы и снижают их ресурс. Для борьбы с этим явлением в гидрозамок встраивают декомпрессор 5 (см. рис. 20). Принцип работы замка с декомпрессором отличается от обычного тем, что при смещении управляющего поршня 4 первым открывается клапан декомпрессора 5. Смещаясь декомпрессор 5 создает небольшую перетечку жидкости из линии С2 в линию V2 и тем самым снижает в нагруженной линии давление. После этого происходит открытие основного клапана 2 и сброс жидкости из С2 в порт V2. Таким образом мгновенного соединения линии, находящейся под высоким давлением, с линией слива удается избежать.

Читайте также: Замена датчика температуры — бортжурнал KIA Spectra черная года на DRIVE2

Р 19-3 (Гидрозамок устройство).jpg Р 20 (Гидрозамок с декомпрессором устройство).jpg Р 19-2 (Гидрозамок устройство).jpg Р 19-1 (Гидрозамок устройство).jpg

Одним из важнейших параметров гидрозамков является соотношение площадей седла основного клапана и управляющего поршня. Фактически соотношение определяет во сколько раз, запертое в полости C2 давление, может превышать давление в полости управления V1-C1 при сохранении работоспособности замка. Для замков без декомпрессора значение соотношения определяется как показано на рисунке 21А. Обычно значение соотношения лежит в диапазоне от 1:3 до 1:7. Для замков с декомпрессором определение значения соотношения показано на рис. 21Б. Значения соотношений для гидрозамков с декомпрессором может достигать значения 1:20 и более.

Р 21-2 (Гидрозамок передаточное отношение).jpg

Рис. 21

Широкое распространение получили сдвоенные (двухсторонние) гидрозамки, предназначенные для фиксирования гидродвигателя в заданном положении независимо от направления приложенных к гидродвигателю усилий.

Согласно ГОСТ 2.781-96 двухсторонние гидрозамки на схемах обозначаются, как показано на рис 22.

Р 22 (Обозначения сдвоенных гидрозамков).jpg

Устройство и принцип работы односторонних и сдвоенных (двухсторонних) гидрозамков аналогичны. В закрытом состоянии к седлам в корпусе 1 пружинами 5 и 6 прижаты запорные элементы 3 и 4 (см. рис. 23А). Управляющий поршень 2 в зависимости от наличия давления в линиях V1 и V2 смещается и открывает один из запорных элементов 3 или 4 (см. рис. 23Б)

Р 23-2 (Двухсторонний гидрозамок устройство).jpg

При проектировании гидравлических систем, содержащих гидрозамки нужно учитывать несколько условий:

· В закрытом состоянии для надежного удержания нагрузки линии гидрозамков, ведущие к гидрораспределителю, должны быть разгружены в слив (см. рис. 24) Пренебрежение этим правилом ведет к неполному запиранию магистралей и «сползанию» нагрузки.

· Для обеспечения безопасности при удержании нагрузки гидрозамки рекомендуется устанавливать, как можно ближе к исполнительному гидродвигателю или непосредственно на него.

· При совпадении направления нагрузки на исполнительный орган гидродвигателя с направлением его движения (попутная нагрузка), гидрозамок может работать некорректно, постоянно закрываясь и открываясь. Этот режим работы приводит к возникновению ударных нагрузок в гидросистеме и преждевременному выходу из строя ее компонентов. В подобных случаях необходимо вместо гидрозамков применять тормозные клапаны.

Типовые схемы включения односторонних и двухсторонних гидрозамков показаны на рисунке 24.

Р 24 (Типовые схемы включения).jpg

При проектировании гидравлических систем, содержащих гидрозамки, необходимо учитывать, что для их корректной работы в режиме удержания нагрузки требуется, чтобы порты V1 и V2 были открыты в сливную линию. Это требование обычно обеспечивается установкой гидрораспределителя с золотником, линии А и В которого в нейтральном положении соединены с сливной линией. Примеры подключения показаны на рисунке 24

Для чего нужно регулировать клапана

В каждом цилиндре двигателя есть впускные и выпускные клапана. Первые открывают доступ воздушно-топливной смеси в бензиновых двигателях, или воздуха в дизельных, после чего возвращаются в исходное положение и надёжно герметизируют камеру сгорания. Вторые открываются, чтобы выпустить отработанные газы – в момент впрыска они также плотно прилегают к «седлу» головки блока.

Своевременное открытие клапана осуществляется распределительным валом, который толкает шток в нужный момент, выдвигая его из «седла». Назад он возвращается пружиной. Между штоком и собственно кулачком распредвала находится толкатель. И регулируется именно зазор между этим толкателем и кулачком.

Что даёт своевременная регулировка клапанов? Обеспечивается нормальная работа двигателя в горячем состоянии, когда металл расширяется. Зазоры влияют на работу клапанов – они должны обеспечивать плотное их прилегание при горячем двигателе. Они так и называются – тепловые зазоры, и составляют десятые доли миллиметра.

Регулировка клапанов нужна для того, чтобы двигатель обеспечивал положенную мощность и служил долго.

Особенности работы

Клапаны постоянно подвержены воздействиям высокой температуры и давления. Это требует особого внимания к конструкции и материалам данных деталей. Особенно это касается выпускной группы, так как через них выходят горячие газы. Тарелка выпускного клапана в бензиновых двигателях может разогреваться до 800˚С – 900 ˚С, а в дизельных 500˚С – 700˚С. Нагрузка на тарелку впускного в несколько раз ниже, но и она достигает 300˚С, что также немало.

Именно поэтому в их производстве применяются жаропрочные сплавы металлов, содержащие легирующие присадки. Также выпускные клапаны часто имеют полый стержень с натриевым наполнителем. Это делается для лучшей терморегуляции и охлаждения тарелки. Натрий внутри стержня плавится, течет и забирает часть тепла с тарелки и переносит его на стержень. Так можно избежать перегрева детали.

С какой периодичностью производится регулировка

Конечно, регулировка клапанов делается, когда накопился определенный пробег, но для разных автомобилей он тоже разный. Эту информацию можно узнать в инструкции. Но опытные автолюбители советуют заезжать на СТО после каждых 20-45 тысячах километров для отечественных авто, и 60-100 тысяч для иномарок.

Читайте также: Брелок сигнализации Старлайн А91: как настроить и привязать

Но если вы знаете, как влияет зазор клапанов на работу двигателя, то сможете и самостоятельно вовремя определить неполадки. Если при открытом капоте двигатель издаёт шум, как будто там швейная машинка, то надо срочно отправляться на СТО. Второй признак – падение мощности – машина «не тянет», как раньше. В такой ситуации не надо ждать, пока машина отъездит положенный пробег, нужно принимать меры как можно быстрее.

Читать статью  У какого двигателя ваз не гнет клапана при обрыве ремня грм ваз 2114

Что такое клапан двигателя

Сама работа по регулировке стоит очень недорого и занимает около часа – надо ждать, пока остынет двигатель.

На некоторых автомобилях регулировка вообще не производится – если используются специальные гидрокомпенсаторы. Они сами обеспечивают оптимальные режимы, и может понадобиться только их замена, но это бывает редко. Гидрокомпенсаторы можно установить на большинство автомобилей, и навсегда забыть о такой регулировке.

Тормозные клапаны

Тормозной клапан относится к клапанам регулирования давления. В технической литературе данный вид клапанов часто называют уравновешивающими или контрбалансными (counterbalance). Основное применение эти клапаны находят в системах где на гидродвигателях требуется длительное удержание нагрузки и возможно возникновение нагрузки, совпадающей по направлению с движением исполнительного органа гидродвигателя (попутной нагрузки). По количеству контролируемых линий гидродвигателя тормозные клапаны бывают односторонние и двухсторонние.
На схемах тормозные клапаны обозначаются как показано на рисунке 25.

Р 25 (Обозначение тормозных клапанов).jpg

Далее будет рассмотрен принцип работы тормозных клапанов на примере работы гидроцилиндра.

Односторонний тормозной клапан.

На рисунке 26 показано устройство одностороннего тормозного клапана, находящегося в состоянии удержания нагрузки. Клапан состоит из корпуса 10, в котором установлены: дроссель 11, клапан 4, седло 3 с пружиной 2, опорная шайба 1, обойма 7, упор 5, пружина 6 и регулировочный винт 8 с контргайкой 9. Гидравлический цилиндр удерживает нагрузку поршневой полостью. В отличие от гидравлического замка, который удерживает нагрузку независимо от ее величины, тормозной клапан откроется и сработает как предохранительный при величине давления определяемой настройкой поджатия пружины 6. Поэтому, для гарантированного удержания нагрузки такими клапанами давление их настройки выбирают выше максимального на величину от 20% до 50%.

26 (ТК удержание нагрузки).jpg

На рисунке 27 показан тормозной клапан, находящийся в состоянии подъема груза. Для подъема груза гидроцилиндром в порт V2 подается рабочая жидкость. При этом седло 3 смещается влево, преодолевая усилие, создаваемое пружиной 2. Рабочая жидкость из штоковой полости гидроцилиндра свободно уходит в сливную линию. Таким образом осуществляется подъем груза гидроцилиндром. При последующем соединении порта V2 со сливной линией тормозной клапан переходит в режим удержания груза. Дроссель 11 выполняет роль демпфера, который обеспечивает относительно плавное перемещение клапана 4.

27 (ТК под нагрузкой).jpg

На рисунке 28 показан тормозной клапан в режиме работы с попутной нагрузкой. В начальный момент времени тормозной клапан, запертой им поршневой полостью удерживает груз. Поскольку поршневая полость заперта, то при подаче рабочей жидкости в штоковую полость, в ней создается давление, которое через дроссель 11 воздействует на клапан 4. Под воздействием давления в штоковой полости, клапан 4 преодолевает усилие пружины 6 и смещаясь вправо приоткрывает в слив линию С2, соединенную с поршневой полостью цилиндра. Шток гидроцилиндра приходит в движение. В режиме компенсации попутной нагрузки клапан 4 находится в некотором равновесном состоянии, при котором скорость движения штока гидроцилиндра строго определяется расходом рабочей жидкости, поступающим в штоковую полость. При отклонении клапана от равновесного состояния происходит следующее:

· При слишком большом открытии клапана 4 расход жидкости С2-V2. превышает величину расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Происходит падение давления в штоковой полости и зазор между клапаном 4 и седлом 3 уменьшается. При этом расход С2-V2 снижается до величины соответствующей величине расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Клапан приходит в равновесное состояние.

· При слишком малом открытии клапана 4 расход жидкости С2-V2 ниже величины расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Происходит увеличение давления в штоковой полости и зазор между клапаном 4 и седлом 3 увеличивается. При этом расход С2-V2 увеличивается до величины соответствующей величине расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Клапан приходит в равновесное состояние.

28 (ТК при попутной нагрузке).jpg

Устройство привода

За правильную и своевременную работу клапанного механизма отвечает распределительный вал и привод ГРМ. Конструкция и количество распредвалов для каждого типа двигателя выбирается индивидуально. Деталь представляет собой вал, на котором выполнены кулачки определенной формы. Проворачиваясь, они оказывают давление на толкатели, гидрокомпенсаторы или коромысла и открывают клапана. Тип схемы зависит от конкретного двигателя.

Распредвал находится непосредственно в головке блока цилиндров. Привод к нему идет от коленчатого вала. Это может быть цепная, ременная или зубчатая передача. Наиболее надежной является цепная, но она требует дополнительных конструктивных решений. Например, успокоитель для гашения вибрации цепи и натяжитель. Скорость вращения распределительного вала в два раза ниже, чем скорость вращения коленчатого вала. Так обеспечивается согласование их работы.

От количества клапанов зависит количество распределительных валов. Существует две основных схемы:

При наличии только двух клапанов достаточно одного распредвала. Вращаясь, он обеспечивает попеременное открытие впускного и выпускного клапанов. В наиболее распространенных четырехклапанных двигателях устанавливаются два распредвала. Один обеспечивает работу впускных, а другой выпускных клапанов. В двигателях с V-образных расположением цилиндров устанавливается четыре распредвала. По два на каждую сторону.

Кулачки распредвала не толкают стержень клапана напрямую. Существует несколько типов “посредников”:

Роликовые рычаги имеют более предпочтительную конструкцию. На гидротолкатель давят так называемые коромысла, которые качаются на вставных осях. Чтобы снизить трение на рычаге предусмотрен ролик, который контактирует непосредственно с кулачком.

В другой схеме используются гидравлические толкатели (компенсаторы зазора), которые расположены непосредственно на стержне. Гидрокомпенсаторы автоматически регулируют тепловой зазор и обеспечивают мягкую и менее шумную работу механизма. Это небольшая деталь состоит из цилиндра с поршнем и пружиной, каналов для масла и обратного клапана. Для работы гидротолкателя используется масло, которое подается из системы смазки двигателя. Более подробно про гидрокомпенсаторы можно прочитать в отдельной статье на нашем сайте.

Механические толкатели (стаканы) представляют собой втулку, закрытую с одной стороны. Они устанавливаются в корпус ГБЦ и непосредственно передают усилие на стержень клапана. Основные их недостатки заключаются в необходимости периодической регулировки зазоров и стуке при работе на непрогретом двигателе.

Средства для чистки нагара на клапанах

Многих автовладельцев интересует вопрос о том, чем отмыть нагар на клапанах? В настоящее время существует ряд химических средств, предназначенных непосредственно для удаления такого нагара. Как правило, это присадки, добавляемые в топливо. Они смешиваются с бензином, и в процессе сгорания вместе с топливовоздушной смеси размягчают этот состав, способствуя его сжиганию вместе с топливом. Среди таких присадок особой популярностью у автовладельцев пользуются:

Также кроме фабричных средств нагар с клапанов можно удалить при помощи ортофосфорной кислоты. Можно использовать не чистый ее состав, а разбавленный. Она отлично удаляет различные отложения, поэтому хорошо справится и с нагаром. Проверено автолюбителями на практике! Интересно, что в составе популярного напитка Coca-Cola также в небольшом количестве имеется ортофосфорная кислота, поэтому его также можно использовать для отмывки загрязнения.

Втулки клапанов и их направляющие

Отвод тепла от стержня клапана и его перемещение в возвратно поступательной плоскости обеспечивают направляющие втулки. В процессе работы сами втулки подвергаются воздействию высоких температур, омываясь горячими отработанными газами. При возвратно поступательном движении клапана между ним и поверхностью втулки возникает трение. Если смазки поступает не достаточно, то трение идёт практически на сухую.

Именно по этой причине к материалу втулок применяют ряд требований, таких, как: стойкость к износу, высоким температурам, трению. Некоторые составы чугуна, алюминиевая бронза, керамика обладают всеми свойствами, необходимыми для создания детали, удовлетворяющей таким требованиям.

Для впускных клапанов, в связи с разницей в температуре нагрева, зазоры между направляющей втулкой и стержнем делаются меньше. Нижнюю часть втулки делают под конус для предотвращения заклинивания клапана.

Как будут работать клапана при неправильно выставленном зазоре

Двигатель работает в жёстком температурном режиме, от высокой температуры металл расширяется. Поэтому, если толкатель плотно прижимается к кулачку распредвала, происходит следующее:

То же самое произойдет, если неплотно закрываются выпускные клапана.

Уменьшится зазор может из-за износа фаски на широкой части клапана – «тарелке», да и его «седло» также изнашивается из-за постоянных ударов и высокой температуры. Поэтому «тарелка» постепенно утопает в «седле» немного глубже, а толкатель приближается к кулачку. Конечно, эти величины очень малы – микроны, но всё-таки постепенно начинают сказываться на работе двигателя.

Случается и обратная ситуация, когда зазор слишком велик. Например, неизбежно происходит износ кулачков распредвала и поверхности толкателя. Зазор между ними увеличивается. В итоге нарушается работа двигателя – впускные клапана открываются чуть позже, и смесь не успевает попасть в камеру сгорания в достаточном количестве. От этого мощность двигателя падает, и работает он с шумом – из-за стука распредвала по толкателям. Ситуация усугубляется и более поздним открытием выпускных клапанов, отчего отработанные газы удаляются из цилиндра не полностью.

В любом случае, как только двигатель стал хуже «тянуть», тем более еще и работать с большим шумом, пора отправляться на СТО. Иначе однажды поездка закончится вызовом эвакуатора, а затем заменой некоторых узлов двигателя. Так экономия нескольких сотен рублей и часа времени приводит к длительному и дорогостоящему ремонту.

Выточки под клапана (седла)

Долговечность и правильная работа двигателя внутреннего сгорания напрямую зависят от качества изготовления выточки под клапана. При неправильной стыковке клапана и седла не будет обеспечиваться должная герметичность камеры сгорания, и скорый выход мотора из строя неизбежен. Седла изготавливают непосредственно в головке цилиндра, в данном случае речь идёт о чугунных головках. Либо делают их вставными, из стали, например, в алюминиевых головках.

Вставные седла удерживаются в головке путём запрессовки, или развальцовки.

Что такое клапан двигателя

Под клапаном подразумевается металлическая деталь, устанавливаемая в головке блока цилиндров. Она является частью механизма газораспределения, и приводится в движение распредвалом.

В зависимости от модификации авто двигатель будет иметь нижнее или верхнее расположение ГРМ. Первый вариант еще встречается в некоторых старых модификациях силовых агрегатов. Большинство производителей уже давно перешли на второй вид газораспределительных механизмов.

Читайте также: Как снять дворники бош с машины. Как поменять дворники на машине: пошаговый процесс замены. Что такое «дворники» и когда их надо менять

Клапан двигателя. Назначение, устройство, конструкция

Причина тому – такой мотор легче настраивать и ремонтировать. Для регулировки клапанов достаточно снять клапанную крышку, и не нужно демонтировать весь агрегат.

Источник https://avtodvigateli.com/detali/klapan.html

Источник http://www.motorpage.ru/faq/klapani_dvigatelja__konstruktivnie_osobennosti_i_naznachenie_.html

Источник https://spectorg.su/dvigateli/ustrojstvo-klapana.html

Понравилась статья? Поделиться с друзьями: