Диагностирование и ТО ходовой части автомобиля
К ходовой части автомобиля относятся: кабина, платформа, рама, ступицы колес, подвеска, поворотные кулаки, шкворневые соединения, шины, колеса и др.
В процессе эксплуатации из-за трения, деформации, появления трещин, ослабления болтовых и заклепочных соединений, потери упругости, поломок возникают различные неисправности и происходят отказы ходовой части, которые ухудшают техническое состояние автомобиля.
Основные неисправности ходовой части:
- изгиб, трещины и изломы продольных балок и поперечин рам;
- ослабление болтовых и заклепочных соединений;
- потеря упругости рессор, поломка их листов;
- утрата работоспособности амортизаторов;
- деформация передней балки;
- изнашивание шкворневых соединений;
- разработка подшипников и их гнезд в ступицах колес.
На грузовых автомобилях наблюдаются: изгиб передних балок, погнутость рычагов и оси поворотной цапфы.
Балка переднего неразрезного моста не должна иметь прогибов и скручивания, а также значительного износа отверстий в бобышках под шкворни. Наиболее быстро изнашиваемыми деталями переднего моста являются шкворни и втулки поворотного кулака.
Чрезмерный износ этого сопряжения вызывает нагрузки, которые ведут к разрушению подшипников ступиц передних колес, отверстий оси под шкворни. Состояние деталей шкворневых соединений определяется радиальным и осевым зазорами.
Радиальным зазором является зазор между шкворнем и его втулками, осевым — зазор между бобышкой передней оси и проушиной поворотного кулака. Радиальные и осевые зазоры в шкворневых соединениях не должны превышать соответственно 0,75 и 1,5 мм. При эксплуатации автомобиля необходимо следить за углами установки передних колес и систематически проверять их. От этого в значительной степени зависит легкость управления и устойчивость движения автомобиля, а также характер и интенсивность изнашивания шин передних колес.
В передней подвеске легкового автомобиля возможны:
- изгибы балки, верхнего и нижнего рычагов;
- износ верхнего и нижнего шаровых пальцев, сухарей, вкладышей, резиновых втулок.
Все это приводит к изменению углов установки управляемых колес, вызывающему ухудшение управляемости автомобилем, перерасходу топлива и износу шин. Неполадки элементов подвески влияют на плавность хода, устойчивость автомобиля в период его движения. Полный контроль и регулировка углов установки управляемых колес производится только на легковых автомобилях, имеющих независимую подвеску передних колес и шины с низким давлением воздуха. Для легковых автомобилей даже небольшие отклонения (15…20`) от нормы углов развала колес и наклона оси значительно влияют на изнашивание шин и ухудшают устойчивость автомобиля.
2. Общая проверка ходовой части
Для обнаружения дефектов крепления и зазоров в шарнирных соединениях, сайлентблоках, кронштейнах амортизаторов ходовой части легковых и грузовых автомобилей, в подвеске двигателя, рулевом приводе, подшипниках ступиц колес и т.п., а также выявления мест возникновения различных посторонних стуков и скрипов предназначен детектор люфтов ходовой части и подвески.
Детектор люфтов (рис. 1) представляет собой одну (две) стационарно установленные платформы, состоящие из неподвижных плит с антифрикционными наладками и подвижных площадок, которые лежат на антифрикционных накладках и могут перемещаться под воздействием штоков гидроили пневмоцилиндров, расположенных во взаимно перпендикулярных направлениях.
Рис. 1. Внешний вид детектора люфтов: 1 — электрошкаф; 2 — пульт управления с электрическим фонарем; 3 — гидро- или пневмоцилиндры; 4 — подвижные площадки
Принцип работы детектора заключается в принудительном перемещении колеса передней подвески автомобиля знакопеременными силами и визуальном определении соответствующих люфтов. Колеса автомобиля устанавливают на две подвижные площадки, которые под действием привода попеременно, с частотой примерно 1 Гц, перемещаются в разные стороны, имитируя движение колес по неровностям дороги. Сочлененные узлы (шаровые опоры, шкворневые соединения, шарниры рулевых тяг, узел посадки сошки руля и др.) визуально проверяют на недопустимые перемещения, стуки, скрипы.
В зависимости от модели стенда площадки, на которых устанавливаются колеса автомобиля, передают поперечные, поперечнопродольные или поперечно-продольные и диагональные (по диагонали под углом 45°) колебания с частотой примерно одно движение в секунду, имитируя движение по дороге. Ход площадок в одном направлении (в зависимости от модели стенда) составляет 40…150 мм. Детекторы для проверки легковых автомобилей развивают усилие около 11 кН, грузовых — около 30 кН.
Контроль соединений осуществляют визуально с помощью подсветки, вмонтированной в переносной пульт управления, на которой размещена также кнопка управления площадками.
Детектор люфтов может монтироваться на осмотровых канавах, эстакадах, платформенных электрогидравлических подъемниках ножничного типа (в двух исполнениях — с заглублением либо установкой на поверхности).
3. Проверка углов установки колес
3.1. Назначение углов установки колес
Техническое состояние ходовой части автомобиля во многом предопределяется правильной установкой углов управляемых колес (рис. 2), которые выполняют определенные функции при движении автомобиля.
Для уменьшения сопротивления движению, а значит и расхода топлива, а также изнашивания шин и подвески, путем снижения действующих на них динамических нагрузок, управляемые колеса должны катиться в вертикальных плоскостях, параллельных продольной оси автомобиля.
Важным фактором повышения устойчивости автомобиля является стабилизация управляемых колес, т.е. стремление колес вернуться после поворота в положение, соответствующее прямолинейному движению автомобиля. С учетом перечисленных факторов для правильной установки колес автомобилей необходимо соблюдать углы развала, схождения, продольного и поперечного наклона оси, а также разность внутреннего и наружного углов поворота управляемых колес.
Угол развала α (рис. 2, а) — это угол между плоскостью колеса и вертикальной плоскостью, параллельной оси автомобиля, он считается положительным, если верхняя часть колеса отклонена наружу от вертикальной плоскости. Угол развала необходим, чтобы обеспечить перпендикулярное расположение колес при движении нагруженного автомобиля по отношению к поверхности дороги при наличии зазоров в шарнирных соединениях и деформации деталей переднего моста под действием масс передней части автомобиля. При установке колес с правильным углом развала сила реакции дороги в основном передается на внутренний подшипник ступицы колеса, выполняемый обычно большего размера, чем наружный, что разгружает наружный подшипник колеса, а значит, уменьшает толчки, передаваемые на рулевой механизм.
Рис. 2. Углы установки управляемых колес
При развале повернуть колесо всегда труднее, чем вернуть его в исходное положение, т.е. движение по прямой. Это объясняется тем, что при повороте колеса передняя часть автомобиля приподнимается на небольшую величину и водитель прилагает сравнительно большое усилие к рулевому колесу.
При возвращении управляемых колес в положение, соответствующее движению по прямой, масса автомобиля помогает поворачиванию колес и водитель прикладывает к рулевому колесу небольшое усилие.
Нарушение угла развала колес приводит к одностороннему износу протектора шины: если угол развала больше нормы, изнашивается наружная сторона протектора, и наоборот, если он меньше нормы — внутренняя сторона протектора. Кроме того, значительная разница в углах развала правого и левого колес вызывают увод автомобиля в сторону колеса с большим развалом.
В процессе эксплуатации автомобилей углы развала управляемых колес изменяются из-за изнашивания шарниров передней подвески, подшипников ступиц передних колес и деформации поперечины передней подвески.
Угол схождения колес, или схождение колес (рис. 2, б) — разность расстояний между внутренними поверхностями задней и передней частей шин переднего либо заднего моста (Б — А). Он необходим для того, чтобы обеспечить параллельное качение колес, так как при движении автомобиля из-за установки колес с развалом возникает усилие, способствующее разворачиванию колес на угол 0,5…1,0° от вертикальной плоскости автомобиля, что приводит к качению колес по расходящимся дугам. Кроме того, угол схождения предохраняет колеса от проскальзывания при наличии люфта в сочленениях рулевых тяг, подшипниках колес.
Углы схождения колес изменяются из-за изнашивания шарнирных соединений рулевой трапеции и деформации ее рычагов, что увеличивает ступенчатый износ протектора с образованием острых кромок, направленных к продольной оси автомобиля (при увеличенном угле схождения) или наружу (при уменьшенном угле).
Характерной особенностью подвески переднеприводных автомобилей являются близкие к нулю или даже отрицательные значения углов развала и схождения колес. Расположение передних колес под такими углами обеспечивает их параллельность при движении, когда на колеса передается крутящий момент от двигателя автомобиля.
Угол продольного наклона оси γ поворотной стойки (рис. 2, в) определяется величиной наклона верхнего конца оси назад от вертикали. Благодаря продольному наклону оси колесо устанавливается так, что точка его опоры по отношению к оси поворота отнесена назад на определенную величину и колесо всегда стремится занять исходное положение, т.е. положение автомобиля при движении по прямой. Эта величина является плечом боковой силы, возникающей при повороте, в результате чего создается стабилизирующий момент, который стремится повернуть колесо вокруг оси и вернуть его в исходное положение. Это улучшает устойчивость и стабилизацию управляемых колес при прямолинейном движении автомобиля, которая зависит также от эластичности шин: чем эластичнее шины, тем больше их деформация и момент, стремящийся повернуть колесо в нейтральное положение.
Угол поперечного наклона оси β поворотной стойки (рис. 3) определяется углом, образуемым осью стойки, верхняя часть которой отклонена внутрь, с вертикальной плоскостью. Угол β считается положительным, если нижняя часть оси наклонена назад. Такой наклон оси совместно с углом развала уменьшает расстояние между точкой пересечения геометрической оси подвески с дорогой и точкой центра контакта шины, т.е. уменьшается плечо А момента, который необходимо приложить при повороте колес автомобиля, а значит, облегчает управление автомобилем.
Рис. 3. Угол поперечного наклона оси β
Правильно установленный угол β также содействует улучшению стабилизации передних колес автомобиля, особенно при небольших скоростях движения. Из-за поперечного наклона при повороте автомобиля происходит небольшой подъем его передней части. Масса поднятой части автомобиля стремится вернуть колесо после поворота в положение, соответствующее прямолинейному движению. Разность внутреннего и наружного углов поворота (θв — θн) необходима для исключения проскальзывания колес при их повороте (см. рис. 2, б).
Неправильные установка углов развала, схождения и соотношение углов поворота колес приводят к тому, что в местах контакта колес с дорогой они не только продолжают вращаться, но и проскальзывают. Проскальзывание колес приводит к повышенному изнашиванию шин, дополнительным затратам энергии. Неточно установленные углы поперечного и продольного наклона оси нарушают стабилизацию колес. При этом пятна контакта шин с дорогой левого и правого колес располагаются неодинаково (на разном расстоянии) по отношению к проекции оси поворота на плоскость дороги.
3.2. Стенды для проверки углов и установки колес легковых автомобилей
В автотранспортных организациях для определения углов установки колес используют динамические фиксирующие силы, действующие на элементы стенда (диагностические параметры вращающихся колес автомобиля), и статические стенды (для проверки углов установки колес неподвижного автомобиля).
Принцип действия динамических стендов следующий: колеса автомобиля при проезде площадки стенда или вращении на его роликах создают при контакте шин с опорной поверхностью боковую силу, которая фиксируется специальными устройствами. По типу опорно-воспринимающих устройств динамические стенды подразделяются на роликовые (барабанные) и площадочные. Основной недостаток динамических стендов — невысокая точность измерения. С их помощью можно лишь комплексно оценить установку колес, что затрудняет определение поэлементных неисправностей. Наибольшее распространение, в том числе и в Республике Беларусь, получили динамические площадочные стенды MINC фирмы Маха, применяемые при государственном техническом осмотре для грузовых автомобилей, выезжающих в страны Западной Европы.
Такие стенды представляют собой площадку (площадки), имеющую возможность поперечного перемещения. Если колесо автомобиля по своим углам установки расположено не оптимально, тогда при движении в пятне контакта колеса с дорогой возникает поперечная сила, которая сместит площадку в сторону. Это смещение определяется в метрах на 1 км (рис. 4). По его величине определяют боковую силу, которая зависит от параметров установки управляемых колес. Смещение площадки указывает на общее состояние ходовой части и рулевого управления автомобиля. Стенд для экспресс-диагностики положения колес (рис. 5) имеет рамную конструкцию, предназначенную для проезда через его подвижную контрольную платформу колеса в заданном направлении и измерения ее горизонтального перемещения в направлении, перпендикулярном направлению проезда.
Рис. 4. Принцип определения положения колес
Рис. 5. Конструкция стенда для экспресс-диагностики положения колес: 1…3, 6, 7 — салазки; 4 — измерительный датчик; 5 — измерительная плита; 8 — направляющие; 9 — устройство сдвига; 10 — короб
Основными элементами конструкции стенда являются: плита, по которой проезжает колесо проверяемой оси автомобиля; салазки, служащие для перемещения плиты; устройство сдвига, которое связано с измерительной плитой и может передвигаться по направляющим. В свою очередь с устройством сдвига связан измерительный датчик, представляющий собой потенциометр, регистрирующий величину сдвига и направление перемещения плиты при проезде по ней автомобиля.
Нахождение автомобиля на площадке определяется датчиком присутствия, находящимся под подвижной площадкой.
При переезде через измерительную плиту, установленную на уровне пола, она отжимается вправо или влево в зависимости от движения колеса, что отображается на экране (рис. 6). Результаты измерений записываются автоматически последовательно (сначала для переднего, а затем для заднего моста) и отмечаются различными цветами.
Рис. 6. Данные контроля схождения колес автомобиля
Зеленым цветом отображаются положительные результаты проверки (увод колеса находится в пределах 0…7 м/км), оранжевым — удовлетворительное состояние (7…14 м/км), красным — неудовлетворительное (увод больше 14 м/км или результаты увода отрицательные). Неудовлетворительные результаты проверки свидетельствуют о неисправностях шин, колес, подвески, рулевого управления или указывают на необходимость регулировки углов установки управляемых колес.
Площадочные стенды характеризуются высокой производительностью, так как время контроля определяется продолжительностью проезда площадок передними колесами автомобиля со скоростью 3…5 км/ч.
Для более точного определения углов установки управляемых колес необходимо использовать статические стенды на отдельном посту, которые позволяют достаточно точно измерять величину схождения и развала колес, продольного и поперечного наклона шкворня (оси). По типу измерительных устройств эти стенды подразделяются на оптико-электрические, лазерные и электронные.
Из-за небольшой точности измерения оптико-электрические стенды в настоящее время практически не применяются, ограниченное применение имеют и лазерные стенды. К недостаткам вышеуказанных стендов можно отнести невысокую точность и низкую скорость выполнения измерений. Из-за невозможности одновременного измерения параметров передней и задней оси в процессе работы приходится переставлять передние измерительные головки на задние колеса. Кроме того, время операций значительно возрастает в связи с необходимостью проведения большого числа вспомогательных вычислений. При работе на таких стендах не предусмотрена возможность автоматического сравнения результатов измерений со значениями, рекомендуемыми предприятиями-изготовителями.
В настоящее время для проверки углов установки колес применяют, как правило, электронные стенды, к основным преимуществам которых относят: высокую технологичность в работе; хорошие метрологические характеристики; возможность вывода информации о результатах измерения на цифровые и аналоговые индикаторы, экран дисплея, цифро-печатающее и различного рода запоминающие устройства. Применение электронных стендов позволяет проверять углы установки не только передних, но и задних колес, что необходимо для некоторых моделей автомобилей.
Кордовые электронные стенды первых моделей оснащены четырьмя измерительными головками, в которых применяются потенциометрические датчики. Необходимая для измерений кинематическая связь между потенциометрами на соседних головках обеспечивается с помощью специальных резинок (кордов) с крючками на концах, которые зацепляются за рычажки потенциометров перед проведением работ. Кордовые электронные стенды обладают более высокой точностью, чем оптические, а имеющиеся в их составе интерфейсные платы позволяют выводить значения всех измеренных параметров на монитор, автоматически сравнить полученные значения с рекомендуемыми производителем. Передача информации между измерительными головками и центральным модулем осуществляется по проводам.
Более высокую точность измерений имеют стенды, в которых определение углов установки колес производится с использованием инфракрасного излучения (рис. 7). В сравнении с кордовыми стендами у них более высокая точность измерений и отсутствуют соединительные провода между измерительными головками. На каждой головке вместо потенциометров установлены источники, связанные между собой посредством канала инфракрасного излучения, а также имеется матрица из специальных чувствительных элементов. Электронная система определяет, какой из них «засвечен» поперечным лучом источника от противоположной головки; по расстоянию от «засвеченного» элемента до центра матрицы определяется величина схождения для каждого из колес.
Рис. 7. Общий вид электронного стенда для проверки углов установки колес: а — монитор с клавиатурой; б — измерительная головка; 1 — монитор; 2 — клавиатура; 3 — графический планшет; 4 — корпус
Инфракрасные лучи, направленные вдоль автомобиля, служат для определения продольной оси его симметрии. Оснащение такого стенда персональным компьютером позволяет, помимо всего прочего, сохранять результаты проведенных регулировок. Как правило, в совокупности со стендом применяется подъемник.
Перед определением углов установки колес измерительные головки с помощью специальных уровней устанавливаются в строго горизонтальное положение относительно плоскости подъемника. Информация о положении закрепленных на колесах автомобиля измерительных головок относительно горизонтальной и вертикальной плоскостей подъемника передается в электронный блок.
Анализируемые сигналы в виде цифровой, буквенной или графической информации поступают на экран дисплея. На основании полученной информации производятся соответствующие регулировки. Для сравнения нормативных и действительных значений параметров в памяти электронного блока хранится соответствующая информация по маркам и моделям автомобилей. В случае отсутствия информации ее можно вводить.
В блок памяти стенда встраивается постоянно обновляемая база данных автомобилей, производимых в разных странах, с допусками на основные параметры, схемами и анимацией регулировок, ведется также архив клиентов, в котором хранятся данные на каждый отрегулированный автомобиль. По окончании работ выдается распечатка с результатами измерений, а также нормативными значениями параметров.
В настоящее время все большее распространение находят компьютерные стенды с использованием 3D-технологий, например, Geoliner фирмы Hofmann, FWA 4630 фирмы Bosch, «Техно Вектор 7» фирмы «Технокар» (Россия).
Стенд такого типа состоит из персонального компьютера и стойки, на которой перемещается в вертикальном направлении поперечина с двумя камерами с встроенной видеосистемой (рис. 8).
Рис. 8. Общий вид стенда с использованием 3D-технологий: а — измерительный модуль на стойке; б — измерительный модуль напольного типа; 1 — компьютер; 2 — лазерный луч; 3 — камера с встроенной видеосистемой; 4 — стойка с измерительным модулем; 5 — мишень
На колеса автомобиля навешиваются специальные отражатели (мишени) — метки круглой или прямоугольной формы, выполненные на квадрате (рис. 9). Отражатели являются пассивными, т.е. действуют без подвода каких-либо электронных или радиосоединений. Каждая камера контролируется двумя видеокамерами: одна отслеживает переднюю мишень, другая — заднюю. Из камеры лазерный луч с частотой 2 раза в секунду освещает круги квадрата (мишень) вспышкой и, отражаясь, попадает в камеру видеосистемы. Синхронизированные с появлением вспышек видеокамеры фиксируют изображение меток. Автомобиль при проверке перекатывается вперед и назад на 15…25 см. В зависимости от положения установленных на колесах мишеней (которое зависит от величины углов установки колес автомобиля) меняется и проекция светоотражающих элементов на светочувствительную матрицу видеокамеры. По степени изменения проекции светоотражающих элементов на матрицу система рассчитывает все углы установки колес автомобиля.
Рис. 9. Мишени и их установка на колеса автомобиля
Стенд измеряет геометрические параметры с точностью 1 мм на дистанции 6 м, рассчитывает траектории движения меток и определяет положение осей вращения всех четырех колес. При повороте колес на 11..13° измеряется разность углов поворота колес.
Главное достоинство стенда — исключение операций по вывешиванию колес и компенсации биения, что значительно сокращает время проверки.
Наиболее совершенными технологиями при проверке углов установки управляемых колес являются роботизированные системы, например система WAB 01 (Германия; рис. 10). Перед въездом автомобиля на подъемник ножничного типа 3 передние и задние площадки 4 с поворотными кругами 1 автоматически занимают положение, соответствующее расстоянию между осями обслуживаемого автомобиля, которое выбирается из базы данных. Измерительные головки 6 имеют привод, позволяющий им перемещаться от одной оси к другой, а инфракрасные сенсоры автоматически находят центр колеса проверяемого автомобиля и проводят компенсацию.
Рис. 10. Роботизированная система WAB 01 для проверки и регулировки углов управляемых колес: 1 — поворотный круг; 2 — платформа; 3 — подъемник ножничного типа; 4 — площадка; 5 — адаптер; 6 — измерительная головка
Измерения производятся без участия оператора: на измерительной головке имеется адаптер 5 в виде трехлучевой звезды, опорные лапки которого автоматически подводятся к диску колеса. В основании адаптера находятся датчики, позволяющие по их положению на колесе определять углы установки колес. В зависимости от требований автопроизводителя, оператор может находиться либо внутри, либо снаружи автомобиля.
Автомобиль в процессе измерений остается неподвижным, а его колеса автоматически приводятся во вращение за счет разнонаправленного движения передних поворотных кругов и задних площадок, встроенных в платформы подъемника. При повороте колеса измерительные головки автоматически отслеживают его движение. По завершению процесса головки возвращаются в первоначальное положение. Время измерения углов установки колес составляет 4 мин.
Для более точного определения углов установки управляемых колес необходимо применять статические стенды на отдельном посту.
3.3. Линейки и стенды для проверки углов установки колес грузовых автомобилей
Для грузового автомобиля нельзя использовать оборудование, применяемое для диагностики и регулировки углов установки колес легкового автомобиля, поскольку на таком оборудовании измеряются углы установки колес по отношению друг к другу, но не учитывается геометрия несущей рамы. Если на таком оборудовании диагностировать грузовой автомобиль, то высока вероятность получить большую погрешность результатов и не заметить неправильно выставленного положения колес либо отрегулировать его неправильно. Это, в свою очередь, вызовет ухудшение аэродинамических свойств транспортного средства, что приведет к повышенному расходу топлива. В связи с этим для грузовых автомобилей применяют специальные стенды, которые отличаются от стендов для проверки углов установки колес легковых автомобилей.
Линейки. Проверку схождения колес грузовых автомобилей можно производить с помощью специальных линеек (рис. 11). Наиболее распространенной является линейка модели «ПСК-ЛГ» (грузовые автомобили) российского производства. Линейка выполнена в виде трубки с ручкой, на одном конце которой крепится измерительный наконечник, а на другом — корпус. На корпусе трубки расположена подвижная втулка, на которой установлена отсчетная шкала. Внутри трубки перемещается выдвижной шток, в который ввертывается удлинитель со вторым измерительным наконечником. Принцип измерения угла схождения колес основан на определении разности величин расстояний, измеренных между различными точками противоположных друг к другу передних колес автомобиля.
Рис. 11. Комплект линейки для проверки схождения колес
При замере угла схождения линейку устанавливают спереди колес так, как показано на рис. 12. Затем автомобиль перекатывают вперед до тех пор, пока линейка не займет соответствующее положение за передней осью. Перемещение шкалы линейки укажет на величину схождения колес.
Рис. 12. Проверка схождения управляемых колес: 1 — шкала линейки; 2 — движок линейки; 3 — линейка; 4 — отвесы
Проверка схождения управляемых колес дает очень большую погрешность в измерениях, так как в этом случае не учитывается положение осей колес относительно рамы автомобиля.
При использовании методики измерения углов установки колес за измерительную базу принимается рама 2 автомобиля (рис. 13). Центральная осевая линия рамы 1 принимается за вектор направления движения транспортного средства и относительно этой линии (вектора) проводятся измерения и регулировка углов установки колес и осей. Применяя данную методику, можно измерять развал и схождение как управляемых, так и неуправляемых осей.
Рис. 13. Схема шасси грузового автомобиля
Стенды для измерения геометрии рамы и углов установки колес грузовых автомобилей. Основными параметрами для грузовых автомобилей, измеряемыми стендами, являются:
- геометрия рамы;
- схождение управляемых колес и колес задней и средних осей;
- развал колес;
- продольный наклон шкворня;
- наличие погнутости рулевой трапеции;
- максимальные углы поворота;
- установка спицы рулевого колеса в горизонтальное положение;
- разница углов поворота правого и левого колес;
- боковое смещение задней оси.
Стенды могут быть оборудованы как компьютерными системами измерения, например TruckCam, JOSAM i-track (Швеция), так и бескомпьютерными системами измерения, например KOCH HD-30 (Германия).
Стенд для измерения геометрии рамы и углов установки колес (рис. 14) включает: четыре съемные шкалы для измерения схождения и геометрии рамы, которые крепятся или устанавливаются на пол спереди и сзади автомобиля; две шкалы для измерения продольного наклона, которые кладут горизонтально рядом с колесом (в бескомпьютерных стендах данные по схождению регулируются и считываются непосредственно на них); колесный адаптер с лазерным (инфракрасным) излучателем или измерительными головками; электронный датчик-инклинометр для считывания угла развала и продольного наклона, который устанавливается на адаптер в процессе измерений и регулировки; две поворотные площадки; компьютер с монитором.
Рис. 14. Стенд для измерения геометрии рамы и углов установки колес: а — общий вид; б — колесо с адаптером; 1 — съемная шкала измерения схождения и геометрии рамы; 2 — луч лазера; 3 — электронный датчик-инклинометр для считывания угла развала и продольного наклона; 4 — шкала для измерения продольного наклона; 5 — лазерный излучатель; 6 — колесный адаптер; 7 — поворотная площадка
Процесс измерения происходит следующим образом: на все оси автомобиля с обеих сторон устанавливаются колесные адаптеры, лазерные излучатели (бескомпьютерные стенды) или измерительные головки (компьютерные стенды) поочередно подвешиваются на колесные адаптеры, начиная с задней оси.
Для бескомпьютерных стендов по шкалам 1 (см. рис. 14, а), установленным сзади и спереди, определяют схождение колес. Для этого луч лазера направляется на эти шкалы, установленные спереди и сзади с одной стороны. Шкалы, установленные с одной стороны, передвигают и луч лазера устанавливают на «0» шкалы. Лазерный излучатель устанавливается на другую сторону, луч лазера направляется на шкалы, установленные с другой стороны, и по разности показаний задней и передней шкал определяют схождение колес.
Угол продольного наклона определяют по шкале 4 (рис. 14, б) при повороте колес (бескомпьютерные стенды) или по датчикуинклинометру (компьютерные стенды), по которому определяется и угол развала.
Для определения биения колеса на компьютерных стендах автомобиль перекатывается на пол-оборота колес, на бескомпьютерных стендах колесо вывешивается, прокручивается и по перемещению луча лазера, направленного на шкалу 1 (см. рис. 14, а), определяют биение колеса. Это делается для того, чтобы при дальнейших измерениях произвести компенсацию биения.
В компьютерных стендах TruckCam вместо луча лазера применяется цифровая камера, которая работает по аналогичному принципу, но с использованием не лазера, а инфракрасного света, все измерения проводятся автоматически. Камера измеряет расстояние и позицию относительно передних и задних маркеров, затем с помощью программного обеспечения система самостоятельно просчитывает показания установки углов колес, параллельность и положение осей относительно друг друга и относительно центральной линии рамы транспортного средства.
Результаты проверки в компьютерных стендах выводятся на монитор (рис. 15) и могут быть распечатаны в виде диагностической карты.
Рис. 15. Результаты проверки углов установки колес передней (а) и задней (б) оси
Независимо от применяемого оборудования перед проверкой углов установки колес выполняют следующие работы:
- измеряют давление воздуха в шинах и при необхдимости доводят его до нормы;
- проверяют состояние шин, колес, осей, рулевых тяг и рычагов подвески, а также затяжку подшипников ступиц передних колес (при вывешенной передней части автомобиля), зазоры в шарнирах соединений рулевой трапеции, крепление картера рулевого механизма.
3.4. Регулировка углов установки колес
Регулировка схождения колес является одной из основных эксплуатационных регулировок ходовой части грузового автомобиля. На управляемой оси такая регулировка производится путем изменения длины поперечной тяги. Регулировку схождения передних колес у всех легковых автомобилей производят изменением длины тяг за счет вращения регулировочных муфт (рис. 16) рулевой трапеции.
Рис. 16. Регулировка схождения передних колес легкового автомобиля: 1 — продольная тяга; 2 — регулировочная муфта
Регулировка схождения колес на неуправляемой оси для грузовых автомобилей может производиться с применением индукционной системы нагрева (рис. 17). В результате изменения структуры металла длина оси изменяется, что и позволяет регулировать схождение колес неуправляемой оси.
Необходимый угол продольного наклона оси для легковых автомобилей устанавливают регулировочными шайбами, расположенными между осью нижнего рычага и поперечиной, снимая шайбы с одной оси и добавляя на другую, а также эксцентриковыми болтами рычага подвески при ослабленных гайках крепления переднего болта.
Рис. 17. Регулировка схождения колес на неуправляемой оси грузового автомобиля с применением индукционной системы нагрева
Рис. 18. Регулировка развала передних колес легкового автомобиля эксцентриковыми болтами, расположенными на стойке (а) и в нижней части автомобиля (б): 1 — шарнир-стабилизатор; 2 — задняя чашка; 3, 4 — гайки; 5 — болт крепления шарнира; 6 — фланец чехла; 7 — эксцентриковый болт
Угол развала для легковых автомобилей устанавливают регулировочными шайбами, добавляя либо убирая их одновременно с обеих осей, или эксцентриковыми болтами.
Эксцентриковые болты для поворота стойки могут располагаться как на самой стойке (рис. 18, а), так и в нижней части автомобиля (рис. 18, б; Mazda).
В некоторых легковых автомобилях углы установки регулируют поворотом верхней телескопической стойки при ослаблении гаек ее крепления.
Для грузовых автомобилей углы развала и продольного наклона шкворня, как правило, не регулируют, а в случае их несоответствия нормативным данным производят разборку и ремонт или заменяют соответствующий узел в целом.
4. Проверка амортизаторов
Амортизаторы наряду с другими системами и агрегатами обеспечивают безопасность движения автомобиля.
Внешними проявлениями неисправности амортизатора являются: продолжительное раскачивание кузова при движении по неровному дорожному покрытию; увеличивающееся колебание кузова при движении по неровному дорожному покрытию; неравномерное и неустойчивое движение колес (подпрыгивание) при движении в определенном диапазоне скоростей, в том числе и на поворотах; отклонение от заданной траектории движения автомобиля при торможении; неустойчивое прохождение поворотов и занос автомобиля; увеличенный износ шин, характеризующийся стиранием рисунка шин; появление щелчков и постороннего шума при движении автомобиля.
Существует несколько методов определения состояния амортизаторов:
- визуальный осмотр;
- раскачивание автомобиля;
- проверка степени нагрева амортизатора;
- оценка поведения автомобиля в движении;
- стендовая диагностика.
Визуальный осмотр предусматривает прежде всего выявление на поверхности корпуса амортизатора подтеков масла, что свидетельствует о потере герметичности и частичном или полном выходе амортизатора из строя.
Раскачивание автомобиля — оценка состояния амортизаторов по количеству колебательных движений кузова при раскачивании стоящего автомобиля до момента полной остановки кузова. Если амортизаторы рабочие, то после прекращения раскачивания кузов останавливается уже на первом или втором (в зависимости от интенсивности раскачивания) свободном качке.
Проверка степени нагрева основана на учете принципа действия гидравлических амортизаторов, которые преобразуют энергию колебаний в тепловую энергию. Из этого следует, что чем теплее амортизатор, тем эффективнее он выполняет свою функцию. Более низкая температура данного амортизатора по сравнению с другими — доказательство снижения эффективности его работы. Если на общем фоне сильно нагревается только один амортизатор, то значит, остальные полностью или частично потеряли способность гасить колебания.
Оценка поведения автомобиля в движении возможна потому, что при неисправных амортизаторах уже на скорости 80…90 км/ч начинает проявляться плохая управляемость автомобиля на дороге, особенно неровной, появляются продольная и поперечная раскачка, снижается курсовая устойчивость. Раскачка имеет слабо затухающий характер и при очередных неровностях ее амплитуда увеличивается. При движении по кривой автомобиль плохо или с большим опозданием реагирует на поворот рулевого колеса.
Стендовая диагностика — самый точный метод определения состояния амортизаторов. Существует два способа данной проверки: на автомобиле при установке его колеса на рабочие площадки вибрационного стенда; проверка величины демпфирующего усилия снятого амортизатора на специальном измерительном стенде. Второй способ дает более точные результаты, однако из-за неудобств и сложностей, вызванных необходимостью снимать амортизаторы, он не нашел широкого применения, тогда как первый способ распространен достаточно широко.
Для оценки состояния подвески (в первую очередь, амортизаторов) в процессе эксплуатации автомобиля применяются стенды, имитирующие движение автомобиля по дорожным неровностям. Действие таких стендов основано на моделировании резонанса в подвеске автомобиля, возникающего в результате воздействия внешней силы от неровностей опорной поверхности. При этом частота колебаний подвески оказывается близкой к частоте свободных колебаний неподрессоренной массы. При резонансе резко возрастают амплитуды и ускорения вынужденных колебаний масс, а их уровень зависит от качества (технического состояния) амортизаторов.
Одним из объективных способов стендовой диагностики является шок-тест (shock-test). Он проводится на стенде, состоящем из небольшого пневматического подъемника и устройства с подпружиненными рычагами, отслеживающего вертикальные перемещения кузова. Колеса испытуемой оси приподнимаются на высоту 10 см, а затем резко опускаются, что вызывает колебания кузова. По результатам их измерения компьютер стенда вычисляет коэффициент затухания колебаний для каждого амортизатора испытуемой оси и сравнивает с предельно допустимой разницей. Однако этот метод не дает информации о реальном состоянии амортизаторов, поэтому он не получил широкого распространения.
Наиболее распространенные способы стендовой диагностики амортизаторов: EUSAMA (Европейская комиссия по стандартизации вибрационных методов испытаний в машиностроении), при котором анализируются вибрационные колебания измерительной пластины с заданной частотой (способ резонансных колебаний); резонансный способ измерения амплитуды колебаний подвески BOGE/MAHA.
Стенд, применяемый для проверки амортизаторов указанными способами, представляет собой две площадки, на которые устанавливается автомобиль последовательно передними и задними колесами (рис. 19). Каждая из площадок снабжена встроенными датчиками для измерения как статической, так и динамической нагрузки на колеса автомобиля. Колебания площадок производятся с помощью эксцентрика 6, приводимого в движение электродвигателем 3.
Рис. 19. Схема стенда для проверки амортизаторов: 1 — колесо автомобиля; 2 — площадка; 3 — электродвигатель; 4 — маховик; 5 — рычаг; 6 — эксцентрик
При подключении стенда площадки начинают совершать вертикальные колебания с разной амплитудой (6,0, 7,5 или 9,0 мм) и частотой возбуждения, изменяющейся от максимальной (16 или 23 Гц), превосходящей резонансную частоту колебаний неподрессоренной массы, до нулевой (при отключении стенда). За счет пружин малой жесткости в приводе стенда обеспечивается постоянный контакт колес автомобиля с площадками.
При достижении максимальной частоты возбуждения источник питания электродвигателей отключается и система начинает совершать свободные затухающие колебания. В случае приближения частоты собственных колебаний неподрессоренной массы к области высокочастотного резонанса происходит увеличение амплитуды колебаний: чем оно значительнее, тем хуже работает амортизатор.
Стендовая диагностика по резонансным колебаниям заключается в использовании вибрационных колебаний измерительной пластины с заданной частотой (рис. 20, а). При этом база колебаний в нижней части жесткая и подпружинена только в верхней части. Технология проверки амортизаторов и подвески заключается в следующем. Сначала проверяемое колесо автомобиля устанавливается точно посередине измерительной площадки стенда для проверки амортизаторов. В состоянии покоя измеряют статическую массу колеса. Затем включается привод перемещения одной из площадок в вертикальном направлении (сначала левой, потом правой). С помощью электродвигателя осуществляется периодическое возбуждение колебаний с частотой 24…25 Гц; при этом измерительная площадка перемещается как жесткое звено.
Рис. 20. Схемы диагностирования амортизаторов по способу резонансных колебаний (а) и резонансным способом измерения амплитуды подвески (б): 1 — колесо автомобиля; 2 — пружина; 3 — кузов автомобиля; 4 — амортизатор; 5 — ось автомобиля; 6 — измерительная площадка; 7 — гибкий торсион
Динамическую массу колеса (масса колеса на плите при частоте колебаний 25 Гц) делят на статическую массу (масса колеса на плите при частоте колебаний 0…1 Гц) и определяют коэффициент падения массы. Например, пусть статическая масса колеса (при частоте 0 Гц) равна 500 кг, а динамическая (при частоте 25 Гц) — 250 кг. Тогда коэффициент падения массы колеса (в процентах): (250/500) · 100 % = 50 %.
При значениях коэффициента падения массы 70…85 % — подвеска в хорошем состоянии. Значения коэффициента 40…70 % оценивают подвеску как работоспособную. При значениях коэффициента меньше 40 % амортизаторы подлежат замене, меньше 20 % — в амортизаторах, как правило, полностью отсутствует масло.
Результаты оценки состояния левого и правого амортизаторов не должны различаться более чем на 25 %. Большое значение разности коэффициентов падения массы по колесам оси говорит о низкой устойчивости автотранспортного средства на дороге.
Обработка результатов базируется на эмпирических значениях, которые были получены с помощью серийных исследований автомобилей различных производителей. При этом предполагается, что у среднестатистического автомобиля жесткость амортизаторов, как правило, увеличивается с увеличением нагрузки на ось.
Способ резонансных колебаний имеет следующие недостатки: результаты измерений зависят от давления воздуха в шине диагностируемого автомобиля; при диагностировании обязательно расположение колеса точно посередине площадки амортизаторного стенда.
В результате тестируется вся подвеска целиком, а стенд показывает алгоритмически вычисленный коэффициент сцепления с дорогой колес автомобиля. Данный способ в своих стендах используют такие фирмы, как BOSCH, HOFMANN, Muller Bern, SUN.
Более корректным является резонансный способ измерения амплитуды колебаний подвески BOGE/MAHA (рис. 20, б).
Измерительная площадка стенда 6 подвешена на гибком торсионе 7, колесо автомобиля подпружинено как в верхней, так и в нижней части, что позволяет измерять не только массу, но и амплитуду колебаний на рабочих частотах.
Технология проверки амортизаторов и подвески по способу измерения амплитуды заключается в следующем. Колесо автомобиля, установленное на измерительную площадку стенда, колеблется с частотой 16 Гц и амплитудой 7,5…9,0 мм. После включения электродвигателя стенда колесо автомобиля колеблется относительно покоящихся масс автомобиля, частота колебаний увеличивается до достижения резонансной частоты (обычно 6…8 Гц). После прохождения точки резонанса принудительное возбуждение колебаний прекращается выключением электродвигателей стенда. Частота колебаний увеличивается и пересекает точку резонанса, в которой достигается максимальный ход подвески. При этом осуществляется измерение частотной амплитуды амортизатора.
Рабочие характеристики амортизатора определяются в дроссельном и клапанном режимах. В дроссельном режиме, когда максимальная скорость поршня не больше 0,3 м/с, клапаны отбоя и сжатия в амортизаторе не открываются. В клапанном режиме, когда в амортизаторе максимальная скорость поршня больше 0,3 м/с, клапаны отбоя и сжатия открываются, причем тем больше, чем больше скорость поршня. При испытании амортизатора на стенде записываются диаграммы в дроссельном режиме: при частоте 30 циклов в минуту, ходе поршня 30 мм, максимальной скорости 0,2 м/с; в случае, когда амортизатор испытывается в амортизаторной стойке, ход поршня составляет 100 мм. Диаграммы записываются и в клапанном режиме: при частоте 100 циклов в минуту, ходе поршня 30 мм, максимальной скорости поршня 0,5 м/с.
Состояние амортизаторов по амплитудному показателю определяется следующим образом: хорошее — 11…85 мм (для задней оси массой до 400 кг — 11…75 мм); плохое — меньше 11 мм, изношенное — больше 85 мм (для задней оси массой до 400 кг — больше 75 мм). Разность хода колес не должна превышать 15 мм. Такой метод диагностики амортизаторов рекомендован к применению ведущими автопроизводителями (например, фирмами Daimler-Chrysler, BMW). На стендах для проверки амортизаторов, например фирмы МАХА, можно производить поиск шумов подвески. В этом режиме оператор сам задает частоту вращения ротора (от 0 до 50 Гц).
5. Регулировочные работы ходовой части автомобилей
Проверка состояния рессоры — оценка состояния рессоры по величине прогиба. Для проверки автомобиль в снаряженном состоянии устанавливается на осмотровую канаву или площадку. Между центрами пальцев рессор устанавливают нить или линейку и проверяют размер А между линией, соединяющей центры пальцев, и основной рессорой (рис. 21). Если размер А меньше указанных в технической характеристике, то это свидетельствует о проседании рессоры.
Значительные прогибы указывают на ослабление листов и малое трение между ними, ограниченные говорят о высоком трении, вызываемом задирами или поломками листов и другими причинами.
Рис. 21. Схема проверки прогиба рессоры
Регулировку подшипников ступиц передних колес грузовых автомобилей проверяют при свободно вращающемся тормозном барабане (не должно быть задевания тормозных колодок). Регулировочную гайку ступицы затягивают ключом до отказа усилием одной руки и отпускают на три-четыре прорези коронки или 0,2…0,3 оборота до совпадения с отверстием для шплинта или ближайшего отверстия в замочном кольце с штифтом.
Проверка и регулировка подшипников задних ступиц колес (на примере автомобилей МАЗ) производится в следующей последовательности. Поднимают заднюю часть автомобиля и сливают масло из колесных передач. Снимают полуоси и разбирают колесную передачу. Далее проверяют легкость вращения колеса, которое должно вращаться от толчка рукой (при тугом вращении выясняют причины и устраняют их). Поворачивая ступицу, затягивают гайку 33 (рис. 22), затем отворачивают ее на 60…75° и проверяют ступицу на легкость вращения; она должна вращаться без люфта.
Рис. 22. Схема колесной передачи автомобиля МАЗ: 1 — шайба; 2 — контргайка; 3, 5 — пробки; 4 — шестерня ведущая; 6 — полуось; 7 — сухарь; 8 — упор полуоси; 9 — крышка; 10, 22 — оси; 11 — подшипник игольчатый; 12 — водило; 13 — кольцо уплотнительное; 14 — сателлит; 15 — шестерня ведомая; 16, 17 — ступицы; 18 — подшипник; 19, 20 — болты; 21 — щит; 23 — пружина; 24 — кулак разжимной; 25 — маслоуловитель; 26 — сальник; 27 — крышка сальника; 28 — колодка тормозная; 29 — барабан тормозной; 30 — болт; 31 — подшипник; 32 — кольцо уплотнительное; 33 — гайка
Устанавливают шайбу 1, затягивают контргайку 2 и стопорят ее отгибом уса стопорной шайбы, затем проверяют еще раз вращение ступицы; осевого люфта при этом не должно ощущаться. Правильность регулировки определяют после пробега автомобиля по степени нагрева ступицы, температура которой не должна превышать 60 °С (при более высокой температуре ступицы рука не выдерживает длительного прикосновения).
Подшипники качения и внутреннюю полость ступицы предварительно заполняют тугоплавкой смазкой и ставят колпаки ступиц. Износ шкворневого узла определяют прибором модели Т1.
Индикатор прибора закрепляют струбциной на балке моста автомобиля. Колесо вывешивают и подводят измерительный стержень индикатора к нижней части опорного тормозного диска (щита). Если есть износ шкворневого узла, то при опускании колеса до соприкосновения с опорной поверхностью будет выбран зазор и индикатор покажет его значение. Сопряжение с зазором до 1,5 мм считается достаточным, а подшипники — годными к дальнейшей эксплуатации.
Погнутость балки переднего моста определяют различными приспособлениями (шаблонами, линейками, угольниками). Балки правят под прессом в холодном состоянии.
6. ТО ходовой части
ЕО. Проверить состояние дверей кабины, платформы, оперения, номерных знаков, механизмов дверей, запорного механизма опрокидывающейся кабины, запоров бортов платформы, капота, крышки багажника, заднего борта автомобиля-самосвала и механизма его запора, рамы, рессор, колес, шин, опорно-сцепного (буксирного) устройства, опорных катков (полуприцепа); убедиться в надежности сцепки прицепного состава.
ТО‑1. Проверить:
- люфт подшипников ступиц колес;
- осмотром состояние рамы, узлов и деталей подвески, буксирного и опорносцепного устройств;
- состояние и действие механизма подъема опорных катков (полуприцепа);
- крепление стремянок и пальцев рессор, крепление колес;
- герметичность пневматической подвески;
- состояние шин и давление воздуха в них (удалить посторонние предметы, застрявшие в протекторе и между спаренными колесами).
ТО‑2. Проверить:
- состояние цапф поворотных кулаков и упорных подшипников, состояние подшипников ступиц передних колес и сальников ступиц, крепление клиньев шкворней;
- состояние и правильность установки балки передней оси.
Проверить и при необходимости отрегулировать:
- углы установки передних колес;
- при необходимости провести статическую и динамическую балансировку колес.
- правильность расположения (отсутствие перекосов) заднего (среднего) моста, состояние рамы, буксирного устройства, крюков, подвески, шкворня опорно-сцепного устройства;
- крепление хомутов, стремянок и пальцев рессор, амортизаторов, реактивных штанг и оси балансирной подвески;
- герметичность амортизаторов, состояние и крепление их втулок.
- состояние и действие механизмов подъема опорных катков полуприцепа;
- при необходимости заменить втулки.
Отрегулировать подшипники ступиц колес.
- колесных дисков и крепление колес;
- шин и давление воздуха в них;
- удалить посторонние предметы, застрявшие в протекторе;
- проверить крепление запасного колеса.
- состояние и действие запорного механизма, упора-ограничителя и страхового устройства опрокидывающейся кабины;
- состояние и действие замков, петель и ручек дверей кабины;
- крепление платформы к раме автомобиля, держателя запасного колеса;
- у полуприцепа состояние и крепление средней стойки;
- крепление крыльев, подножек, брызговиков.
Осмотреть поверхности кабины и платформы; при необходимости зачистить места коррозии и нанести защитное покрытие.
Устройство и виды рулевого управления автомобиля
Рулевое управление – одна из основных систем автомобиля, которая представляет собой совокупность узлов и механизмов, предназначенных для синхронизации положения рулевого колеса (руля) и угла поворота управляемых колес (в большинстве моделей автомобилей это передние колеса). Основное назначение рулевого управления для любых транспортных средств – это обеспечение поворота и поддержание заданного водителем направления движения.
Устройство системы рулевого управления
Конструктивно система рулевого управления состоит из следующих элементов:
- Рулевое колесо (руль) – предназначено для управления водителем с целью указания направления движения автомобиля. В современных моделях оно дополнительно оснащается кнопками управления мультимедийной системой. Также в рулевое колесо встраивается передняя подушка безопасности водителя.
- Рулевая колонка – выполняет передачу усилия от руля к рулевому механизму. Она представляет собой вал с шарнирными соединениями. Для обеспечения безопасности и защиты от угона колонка может быть оснащена электрическими или механическими системами складывания и блокировки. Дополнительно на рулевой колонке устанавливается замок зажигания, органы управления светотехникой и стеклоочистителем ветрового стекла автомобиля.
- Рулевой механизм – выполняет преобразование усилия, создаваемого водителем через поворот рулевого колеса и передает его приводу колес. Конструктивно представляет собой редуктор с некоторым передаточным отношением. Сам механизм соединяет с рулевой колонкой карданный вал рулевого управления.
- Рулевой привод – состоит из рулевых тяг, наконечников и рычагов, выполняющих передачу усилия от рулевого механизма к поворотным кулакам ведущих колес.
- Усилитель рулевого управления – повышает усилие, которое передается от руля к приводу.
- Дополнительные элементы (амортизатор рулевого управления или “демпфер”, электронные системы).
Стоит также отметить, что подвеска и рулевое управление автомобиля имеют тесную взаимосвязь. Жесткость и высота первой определяют степень отклика автомобиля на вращение рулевого колеса.
Виды рулевого управления
В зависимости от типа редуктора системы, рулевой механизм (система рулевого управления) может быть следующих видов:
- Реечный – самый распространенный вид, используемый в легковых автомобилях. Этот вид рулевого механизма имеет простую конструкцию и отличается высоким КПД. Недостатки заключаются в том, что этот тип механизма чувствителен к возникающим ударным нагрузкам при эксплуатации в сложных дорожных условиях.
- Червячный – обеспечивает хорошую маневренность автомобиля и достаточно большой угол поворота колес. Этот вид механизма меньше подвержен влиянию ударной нагрузки, но более дорогостоящий в изготовлении.
- Винтовой – принцип работы похож на червячный механизм, однако он имеет более высокий КПД и позволяет создавать большие усилия.
В зависимости от вида усилителя, который предусматривает устройство рулевого управления, различают системы:
- С гидравлическим усилителем (ГУР). Его основным достоинством является компактность и простота конструкции. Гидравлическое рулевое управление среди современных транспортных средств является одним из наиболее распространенных. Недостатком такой системы является необходимость контроля уровня рабочей жидкости.
- С электрическим усилителем (ЭУР). Такая система рулевого управления с усилителем считается наиболее прогрессивной. Он обеспечивает простоту регулировки настроек управления, высокую надежность работы, экономный расход топлива и возможность управления автомобилем без участия водителя.
- С электрогидравлическим усилителем (ЭГУР). Принцип действия данной системы аналогичен системе с гидравлическим усилителем. Главное отличие заключается в том, что насос усилителя приводится в действие электродвигателем, а не ДВС.
Рулевое управление современного автомобиля может быть дополнено следующими системами:
- Активного рулевого управления (AFS) – система изменяет величину передаточного отношения в зависимости от текущей скорости. Она позволяет корректировать угол поворота колес и обеспечивает более безопасное и устойчивое движение на скользких поверхностях.
- Динамического рулевого управления – работает аналогично активной системе, однако в конструкции в этом случае вместо планетарного редуктора используется электродвигатель.
- Адаптивного рулевого управления для транспортных средств – главной особенностью является отсутствие жесткой связи между рулем автомобиля и его колесами.
Требования к рулевому управлению автомобиля
Согласно стандарту, к рулевому управлению применяются следующие основные требования:
- Обеспечение заданной траектории движения с необходимыми параметрами поворотливости, поворачиваемости и устойчивости.
- Усилие на рулевом колесе для осуществления маневра не должно превышать нормированного значения.
- Суммарное число оборотов руля от среднего положения до каждого из крайних не должно превышать установленного значения.
- При выходе из строя усилителя должна сохраняться возможность управления автомобилем.
Существует еще один стандартный параметр, определяющий нормальное функционирование рулевого управления – это суммарный люфт. Данный параметр представляет собой величину угла поворота руля до начала поворота управляемых колес.
Значение допустимого суммарного люфта в рулевом управлении должно быть в пределах:
- 10° для легковых автомобилей и микроавтобусов;
- 20° для автобусов и подобных транспортных средств;
- 25° для грузовых автомобилей.
Особенности правостороннего и левостороннего руля
В современных автомобилях может быть предусмотрено правостороннее или левостороннее рулевое управление, что зависит от вида транспортного средства и законодательства отдельных стран. В зависимости от этого руль может располагаться справа (при левостороннем движении) или слева (при правостороннем).
В большинстве стран левостороннее рулевое управление (или правостороннее движение). Основное отличие механизмов не только в позиции руля, но и в рулевом редукторе, который адаптирован под различные стороны подключения. С другой стороны, переоборудование правостороннего руля на левостороннее рулевое управление все же возможно.
В некоторых видах спецтехники, например, в тракторах, предусматривается гидрообъемное рулевое управление, которое обеспечивает независимость положения руля от компоновки других элементов. В этой системе отсутствует механическая связь привода и рулевого колеса. Для выполнения поворота колес гидрообъемное рулевое управление предусматривает силовой цилиндр, которым управляет насос-дозатор.
Основные достоинства, которые имеет гидрообъемное рулевое управление для транспортных средств в сравнении с классическим рулевым механизмом с гидравлическим усилителем: необходимость приложения меньших усилий для выполнения поворота, отсутствие люфта, а также возможность произвольного расположения узлов системы.
Таким образом, ГОРУ может обеспечивать и правостороннее, и левостороннее рулевое управление. Это позволяет его устанавливать в транспортных средствах с особыми режимами эксплуатации (дорожно-строительные машины, уборщики).
Система рулевого управления и подвески ходовой автомобиля
В статье рассмотрена система рулевого управления и подвески ходовой части автомобиля с подробным описанием разновидностей систем управления и подвески, также все преимущества и недостатки каждой из них.
Рассказано про принципы действия элементов, входящих в устройство ходовой, и их свойствах. Изучение этой информации позволит автолюбителю сделать первый шаг в освоении профессии автомеханика по ремонту и обслуживанию транспортных средств.
Система рулевого управления и устройство ходовой части постоянно совершенствуется, и без знания старых систем подвески и рулевого управления невозможно в полной мере изучить новые. Дочитаете эту статью до конца, Вы сами в этом убедитесь.
Содержание скрыть
Устройство ходовой части автомобиля: назначение и функции
Устройство ходовой части автомобиля создано так, что система рулевого управления и подвески взаимодействуют и, если возникают неполадки в одном из элементов подвески, это существенно повлияет на характеристики управления автомобилем.
Для того, чтобы автомобиль мог повернуть, передние колеса должны находиться в постоянном контакте с дорожным покрытием. Если подвеска неисправна, возможно, не будет поддерживаться сцепление колес с дорогой, необходимого для эффективного управления.
Если автомобиль с неисправной подвеской поворачивает на высокой скорости, передние колеса могут утратить сцепление с дорожным покрытием, что может привести к аварии.
Назначение рулевого управления и подвески
Система рулевого управления предназначена для управления колесами и точного выбора траектории движения при минимальных усилиях со стороны водителя. Как правило, управляемые колеса в автомобиле передние, а задние колеса двигаются по меньшему радиусу.
Предусмотренное передаточное число рулевого механизма помогает водителю преодолевать сопротивление, возникающее между колесами и дорожным покрытием. Системы рулевого управления оснащены усилителем, дополнительно уменьшающим усилие, которое должен прикладывать водитель.
Резиновые муфты и резиновые демпфирующие элементы опорных кронштейнов амортизируют толчки, возникающие при движении по неровностям дороги и ощущаемые водителем через рулевое колесо.
После завершения поворота, в современных системах управления, для возврата рулевого колеса для прямолинейного движения, водителям требуется прикладывать небольшое усилие, так как действует так называемый эффект самоцентрирования.
Со временем конструкция систем рулевого управления значительно изменилась, значительно возросли безопасность и комфорт водителя. Регулируемая рулевая колонка позволяет водителю сделать настройку рулевого колеса в максимально комфортном и безопасном положении.
Телескопические валы рулевых колонок поглощают энергию столкновения и защищают водителя от сильных травм при аварии. В руле размещен модуль подушки безопасности, благодаря этому, обеспечена дополнительная безопасность водителя. Система подвески:
- изолирует кузов транспортного средства от повреждающего воздействия ударов во время движения;
- уменьшает скручивание кузова автомобиля в любой плоскости движения;
- обеспечивает достаточный комфорт и безопасность перевозки пассажиров и транспортировки багажа;
- обеспечивает сцепление колес с дорогой для повышения эффективности управления, тормозных сил и тягового усилия;
- поглощает поперечные, продольные и вертикальные силы, не меняя при этом направления качения колес.
От того, насколько хорошо автомобиль “держит дорогу”, зависит его поведение во время движения. Совместная работа систем рулевого управления и подвески повышает устойчивость движения автомобиля. За период существования автомобилей в обе эти системы был внесен целый ряд усовершенствований.
В современных системах подвески для поглощения толчков при движении по неровному дорожному полотну применяются пружины и амортизаторы. Подвеска может быть оснащена цилиндрическими пружинами или листовыми рессорами. Для того чтобы уменьшить крен автомобиля на повороте, в системе подвески используют стабилизаторы поперечной устойчивости.
Конструкция системы подвески
Системы подвески постоянно развиваются и совершенствуются. В автомобилях применяют элементы подвески разной конструкции, подбираемой в зависимости от их предназначения.
Листовые рессоры, как правило, используют на грузовых автомобилях средней и высокой грузоподъемности.
Цилиндрические пружины в сборе со стойками подвески, как правило, используются в передней подвеске современных легковых транспортных средств и грузовиков малой и средней грузоподъемности. В некоторых автомобилях применяются элементы подвески обоих типов.
Геометрия переднего моста
Управление должно обеспечивать оптимальную маневренность с надежностью на любой скорости. В значительной мере определяет уровень маневренности радиус поворота, он связан с окружностью поворота по оси следа переднего колеса.
Чем меньше колея и окружность поворота, тем выше маневренность. Радиус поворота автомобиля и радиус поворота по оси следа переднего колеса ограничены конструктивными особенностями рулевого привода.
Геометрия рулевого управления переднего моста менялась по мере развития автомобилестроения на базе двух основных типов конструкции:
- рулевое управление седельного типа (с центральной осью поворота);
- рулевое управление с поворотными кулаками.
В системе седельного типа, точка поворота моста находится под днищем транспортного средства, и поэтому кузов располагается на относительно большой высоте над мостом. Из-за этого центр тяжести транспортного средства становится выше и возрастает риск опрокидывания.
На повороте площадь опоры автомобиля непостоянна, поскольку передние колеса разворачиваются к оси автомобиля, что увеличивает риск опрокидывания. Для системы управления седельного типа характерны: шины подвержены повышенному износу шин и низкая точность управления.
Преимущество системы управления седельного типа заключается в том, что с ее помощью легче уменьшить радиус поворота. Системы управления седельного типа, как правило, применяют только в прицепах.
Рулевое управление с поворотными кулаками более совершенный вариант по сравнению с системой седельного типа. Передние колеса установлены и поворачиваются на поворотных кулаках, которые расположены на концах оси. Рычаги поворотных кулаков надежно подсоединены к поворотным кулакам, которые поворачиваются на поворотных шкворнях или шаровых шарнирах.
Рулевые тяги с шаровыми наконечниками соединяют рулевой привод с рычагами поворотных кулаков. Для обеспечения “оптимального качения” колес в поворотах используется система Аккермана. Рычаги поворотных кулаков и рулевые тяги образуют трапецию.
Рулевая трапеция
Благодаря своей геометрической форме, которую образуют рычаги поворотных кулаков и поперечная рулевая тяга с передней осью, появилось название “рулевая трапеция”. Когда рулевое колесо находится в прямолинейном положении движения, поперечная рулевая тяга параллельна передней оси.
Когда рычаги поворотных кулаков поворачивают, поперечная тяга перестает занимать параллельное положение, вследствие этого внутреннее (правое) колесо поворачивается на больший угол, чем внешнее (левое).
При повороте рулевого колеса в противоположном направлении возникает зеркальный эффект. Такая геометрия обеспечивает наличие общего центра при повороте.
Характеристики рулевого управления с поворотными кулаками
Система рулевого управления с поворотными кулаками позволяет, по сравнению с системой седельного типа, понизить центр тяжести автомобиля.
Опорная площадь автомобиля (ширина колеи) при повороте такая же, как и при движении по прямой – это снижает риск опрокидывания автомобиля. Оптимальное качение, при рулевом управлении с поворотными кулаками, снижает износ шин, особенно на поворотах.
Повышаются точность управления, безопасность и появилась возможность использовать систему независимой подвески, в которой жесткий передний мост заменен независимыми стойками подвески на каждом колесе.
Характеристики рулевого управления
Центробежная сила, воздействующая на автомобиль при прохождении поворота, по-разному влияет на переднюю и заднюю ось в зависимости от положения центра тяжести автомобиля. При повороте боковая реактивная сила всегда пытается сместить колеса с намеченной траектории движения.
Угол такого отклонения именуется углом бокового увода. Водитель должен применить компенсирующий маневр, чтобы снизить угол увода до приемлемого уровня и правильно пройти повороты.
Боковые реактивные силы при повороте, действующие на центр тяжести, который смещен из оптимального положения, приводят к отклонению автомобиля от намеченной траектории движения. Существуют три характеристики управления, которые влияют на заданную траекторию движения автомобиля при повороте, это:
- Нейтральная поворачиваемость.
- Недостаточная поворачиваемость.
- Избыточная поворачиваемость.
Нейтральная поворачиваемость
Нейтральная поворачиваемость – это оптимальное состояние, требуемое, чтобы автомобиль правильно прошел поворот.
Центр тяжести автомобиля, находящийся в оптимальном положении, испытывает воздействие боковых реактивных сил, возникающих при повороте, и влияет на углы бокового увода.
При прохождении поворота желательно, чтобы углы увода передних и задних колес были одинаковыми. Если эти условия соблюдены, водитель без труда поддерживает траекторию движения автомобиля на повороте.
1. Боковая реактивная сила при повороте. 2. Угол бокового увода.
На рисунке показана боковая реактивная сила, возникающая при повороте и действующая на центр тяжести автомобиля при его оптимальном положении. Величина нагрузок на все колеса одинакова, углы увода передних и задних колес равны.
Недостаточная поворачиваемость
Недостаточная поворачиваемость – это состояние управления, при котором на повороте передняя часть автомобиля сильнее отклоняется от первоначальной траектории, чем задняя. Вес и центр тяжести смещаются к передней части автомобиля.
Боковые реактивные силы при повороте воздействуют на передний мост больше, чем на задний, и это влияет на углы увода. Угол увода передних колес увеличивается, в то время как угол увода задних колес уменьшается.
Автомобиль движется по траектории большего радиуса, и водителю приходится поворачивать рулевое колесо более интенсивно, чтобы правильно пройти поворот. Для переднеприводных автомобилей характерна тенденция к недостаточной поворачиваемости, поскольку центр тяжести смещается вперед.
Избыточная поворачиваемость
Избыточная поворачиваемость – это явление, противоположное недостаточной поворачиваемости. При избыточной поворачиваемости на повороте отклонение задней части автомобиля от первоначальной траектории больше, чем передней. Вес и центр тяжести смещаются к задней части автомобиля.
Боковые реактивные силы при повороте воздействуют на задний мост больше, чем на передний, и влияют на углы увода. Угол увода задних колес увеличивается, в то время как угол увода передних колес уменьшается.
Эти факторы уменьшают колею автомобиля, и водителю приходится уменьшать поворот рулевого колеса, чтобы правильно пройти поворот. При повышенной избыточной поворачиваемости задняя часть автомобиля становится неуправляемой.
Системы независимой и зависимой подвески
В системе с независимой подвеской, при нагрузке на подвеску одного из колес, это не влияет на подвеску противоположное колесо.
В системе с зависимой подвеской, при нагрузке на подвеску одного из колес, это влияет и на подвеску противоположного колеса.
В автомобиле с зависимой подвеской, при наезде колеса на неровность возникает крен кузова. При большой неровности дороги, пассажиры будут испытывать дискомфорт.
Подвеска переднего и заднего моста
На всех транспортных средствах, в зависимости от их назначения, применяются различные виды подвесок на переднем и заднем мостах.
От типа подвески транспортного средства зависит управляемость, комфорт и стоимость обслуживания и ремонта.
При всем разнообразии устройств ходовой части автомобиля, общая задача, которую они выполняют, – это безопасность дорожного движения.
Двойные поперечные рычаги
Здесь показаны узлы базовой системы независимой подвески с цилиндрическими пружинами и двойными поперечными рычагами. Поперечные рычаги поддерживают поворотные кулаки, имеют разную длину и перемещаются по разным траекториям, поэтому при перемещениях подвески колея и развал колес изменяются лишь незначительно.
Преимущество подвески заключается в том, что в центре автомобиля нет никаких элементов подвески. Пространство между колесами можно использовать для размещения других элементов, например, двигателя.
Недостаток состоит в том, что необходимо большое количество шарниров и, поэтому, повышается стоимость производства.
Задняя подвеска с поперечной листовой рессорой
В конструкцию задней подвески входит поперечная листовая рессора, которая изготавливается из армированного стекловолокном композитного материала обладающего хорошими демпфирующими свойствами.
Также листовая рессора является направляющим механизмом подвески обеспечивая курсовую устойчивость авто. Отпадает необходимость в стабилизаторах, поперечных рычагах и пружинах.
Благодаря использованию разных функций в одном узле, при минимальном количестве деталей, обеспечивают необходимые ходовые характеристики.
Поперечный рычаг со стойкой Макферсона
Самый распространенный тип независимой передней подвески в современных автомобилях – подвеска со стойками Макферсона. В одном блоке объединены ступица колеса, поворотный кулак, шарниры, амортизатор и пружина. При сжатии пружины колесо сохраняет вертикальное положение.
Поворотный кулак поддерживается одним поперечным рычагом, при перемещении которого, величина колеи, развал колес изменяются незначительно. При необходимости ремонта и регулировок узел легко демонтируется.
При большой длине стоек, нагрузка возникающая в шарнирах рычага невелика, что является преимуществом этой конструкции. Недостатком являются возрастающая нагрузка на кузов в месте верхнего крепления стойки.
Двойные продольные рычаги
Два продольных рычага поддерживают поворотный кулак в сборе, а поперечные торсионы выполняют функцию рессор и амортизируют толчки. Вертикальные перемещения колес заставляют поперечные торсионы скручиваться, благодаря чему амортизируется перемещение колес.
Действие торсиона, возвращающегося в первоначальное состояние, помогает сохранить сцепление колес с дорожным покрытием. При перемещении подвески углы продольного наклона осей поворота колес, колея и развал колес не изменяются.
Если необходимо, узел можно собрать и отрегулировать вне автомобиля. Для этого варианта конструкции требуется обширное пространство в передней части автомобиля и большие затраты на изготовление. Повышенное вертикальное перемещение может привести к поломке торсионов.
Ускорение и торможение приводят к перемещению подвески вверх и вниз, так называемое «галопирование» (продольная качка) автомобиля. Эти перемещения подвески вызывают изменения в колесной базе.
Жесткий мост с листовыми рессорами
На рисунке показаны элементы зависимой подвески, в которой применены листовые рессоры. Опорные проушины листовых рессор прикреплены к шасси автомобиля. Вертикальное перемещение моста заставляют листовые рессоры сжиматься и амортизировать толчки.
Воздействие листовой рессоры, возвращающейся в первоначальное состояние, помогает удержать сцепление колеса с дорожным покрытием. Колея остается неизменной, и поэтому происходит несильный износ шин. Крен кузова при повороте не приводит к изменению развала колес, благодаря чему обеспечивается хорошая курсовая устойчивость.
Узел в сборе достаточно тяжел, и это увеличивает неподрессоренную массу авто. Нежелательной особенностью является взаимодействие колес при сжатии подвески с одной стороны.
Из-за этого возникает тенденция к поперечному смещению моста при наезде на поперечно расположенные неровности на дороге, вследствие чего уменьшается сцепление шин с дорожным покрытием.
Жесткий мост типа «треугольного кронштейна»
Мост поддерживается на кузове центральным шарниром и двумя продольными стойками. В этой конструкции применяются цилиндрические пружины, установленные на обеих сторонах моста рядом с колесами.
Цилиндрические пружины амортизируют вертикальные перемещения моста. Продольные стойки передают к шасси движущий момент и поперечные силы, возникающие при торможении и ускорении.
При торможении задняя часть автомобиля стремится вниз, что помогает стабилизировать автомобиль. Недостатки этой конструкции состоят в больших затратах на изготовление и более высокой массе элементов, из-за чего возрастает неподрессоренная масса автомобиля.
Жесткий мост с приварными стойками, работающими на сжатие/растяжение
Стойки, работающие на сжатие / растяжение, обеспечивают продольное расположение моста, благодаря чему возрастает устойчивость при торможении и ускорении. Большая нагрузка на одну сторону подвески вызывает скручивание стоек сжатия/растяжения (имеющих U-образное сечение), в результате чего на сварные швы действует избыточное напряжение.
На обеих сторонах моста рядом с колесами расположены цилиндрические пружины амортизирующие вертикальное перемещение моста. На них не действуют силы возникающие при ускорении или торможении, посредством стоек растяжения.
Недостатком этих мостов, как и жестких мостов других типов, является большая масса элементов и, следовательно, большая неподрессоренная масса автомобиля.
Торсионный неразрезной мост с продольными рычагами
В подвеске торсионного неразрезного моста с продольными рычагами предусмотрены стойки, соединенные посредством балки U-образного сечения, которая обладает высокой жесткостью при изгибе, но низкой жесткостью при кручении.
Балка U-образного сечения помогает цилиндрическим пружинам амортизировать вертикальные перемещения, а стойки передают моменты, возникающие при ускорении и торможении.
Эта конструкция компактна по размеру, несложна в изготовлении и характеризуется наличием небольшой неподрессоренной массы, но вариант с торсионным подрессориванием более дорогостоящ.
Торсионный неразрезной мост со штангой Панара
Две стойки привариваются к трубе U-образного сечения. Поперечные силы поглощаются диагональной реактивной штангой (штангой Панара), а цилиндрические пружины амортизируют вертикальные перемещения.
При применении этого варианта конструкции, отсутствуют нежелательные изменения колеи и развала колес. Узел в сборе просто устанавливается на кузов посредством эластичных шарниров.
Вариант с торсионами более дорогостоящ, чем вариант с цилиндрическими пружинами в сборе с амортизаторами, показанный здесь.
Задняя подвеска с продольными рычагами
Продольные рычаги установлены вдоль оси автомобиля, а шарниры расположены перпендикулярно направлению движения. Продольные рычаги передают момент, а цилиндрические пружины способствуют амортизации вертикальных перемещений колес.
При торможении задняя часть автомобиля стремится вниз (так называемый эффект “клевка”), благодаря чему обеспечивается устойчивая управляемость. При использовании этого варианта конструкции, отсутствуют изменения колеи и развала колес, и эта конструкция компактна по размеру.
Чтобы обеспечить вращение в изменяющихся плоскостях, необходимо наличие двух карданных шарниров на полуосях. При сжатии подвески происходит очень незначительное изменение колесной базы.
Диагональные рычаги с ведущими полуосями фиксированной длины
Диагональные рычаги устанавливаются под углом к кузову автомобиля. Диагональные рычаги передают момент, а цилиндрические пружины способствуют амортизации вертикальных перемещений колес.
Требуется только один карданный шарнир для каждой ведущей полуоси, поскольку, когда подвеска сжата, радиус поворота рычага подвески равен радиусу поворота полуоси.
При сжатии подвески возникают очень резкие изменения колеи колес, вследствие чего возрастает износ шин, но “клевок» при торможении небольшой. На поворотах водитель сталкивается с небольшой избыточной поворачиваемостью.
Диагональные рычаги с ведущими полуосями переменной длины
По компоновке и принципу действия эта подвеска сходна с подвеской, в которой применяются диагональные рычаги с полуосями фиксированной длины, однако полуоси снабжены дополнительным карданным шарниром, чтобы улучшить отслеживание изменения колеи колес.
В этом случае сжатие подвески приводит к незначительным изменениям колеи, но к большим изменениям развала колес.
Недостаток конструкции – высокая себестоимость из-за сложной конструкции полуосей, обеспечивающей перемещения подвески.
Вспомогательные элементы подвески
Из-за инерции на поворотах автомобиль стремится продолжать движение в прямом направлении. Центробежная сила воздействует на кузов и вызывает его крен, что может быть некомфортно для пассажиров.
Под действием массы автомобиля сжимаются пружины на внешней стороне поворота и растягиваются пружины на внутренней стороне.
Из-за ограничений, имеющихся в рычажных механизмах подвески, трудно поддерживать правильную геометрию колес на сложных поворотах и в сложных дорожных условиях.
Стабилизатор поперечной устойчивости
Стабилизатор поперечной устойчивости (или просто стабилизатор) – это металлическая штанга, соединяющая одну сторону подвески с противоположной стороной подвески. Штанга работает в качестве торсиона и уменьшает крен кузова автомобиля на поворотах.
Стабилизатор закреплен на шасси посредством резиновых опор. Резиновые опоры дают торсиону возможность поворачиваться относительно шасси. Если подвеска сжимается одновременно на обеих сторонах автомобиля, стабилизатор полностью поворачивается в своих опорах и не оказывает никакого действия.
На повороте кузов автомобиля сжимает подвеску внешнего колеса. Шасси автомобиля также испытывает крен, и внешний конец стабилизатора поворачивается вверх. На стабилизатор действует скручивающая нагрузка.
Посредством шарнирных опор, стабилизатор передает часть скручивающей силы на противоположное колесо, оттягивая его вверх, внутрь колесной арки. Из-за этого подвеска внутреннего колеса сжимается и значительно уменьшает крен кузова.
Такое взаимодействие элементов подвески на двух бортах автомобиля делает движение более жестким. При движении по ухабистой дороге обязательно возникает влияние на противоположное колесо, в результате чего автомобиль двигается менее плавно. Стабилизатор можно устанавливать и на передний, и на задний мост.
Диагональная реактивная штанга
Диагональная реактивная штанга (штанга Панара) – это балка, соединяющая задний мост с кузовом. На концах штанги расположены шарниры, которые допускают перемещение шасси и моста.
Диагональная реактивная штанга поглощает поперечные силы, возникающие между мостом и кузовом.
Это снимает нагрузку из-за поперечных сил, воздействующих на продольные балансиры, благодаря чему они передают только момент, возникающий при ускорении и торможении.
Колесная база и колея
Чем больше колесная база и колея, тем выше безопасность движения, особенно на поворотах.
Колесная база – это расстояние между центрами передних и задних колес. Колея – это расстояние между колесами, измеренное между центрами шин в местах контакта с дорожным покрытием.
Схождение колес
Схождение колес – это разница в расстояниях между бортами ободьев колес перед мостом и позади него, измеренная при прямолинейном положении колес.
Если расстояние впереди и позади моста одинаковое, схождение колес нулевое. Как правило, присутствует положительное схождение (или просто схождение) или отрицательное схождение (или расхождение).
Если схождение положительное, расстояние между бортами ободьев перед мостом меньше, чем позади моста. Если схождение отрицательное, расстояние между фланцами ободьев перед мостом больше, чем позади моста.
Нулевое схождение колес желательно для уменьшения напряжений, воздействующих на элементы рулевого управления, однако моменты, возникающие при движении, в переднеприводном автомобиле стремятся сдвинуть передние колеса в направлении друг друга спереди (положительное схождение), а в заднеприводном – раздвинуть колеса (отрицательное схождение). Нежелательному отрицательному схождению противодействует положительное схождение и наоборот.
Развал
Развал – это угол между плоскостью колеса и перпендикуляром к плоскости дорожного полотна, измеренный, когда колеса направлены прямо вперед. Развал положительный, если верхняя часть колеса наклонена наружу.
Плечо обкатки уменьшается, благодаря чему уменьшается влияние сил, воздействующих на колеса и на рулевое управление. Развал отрицательный, если верхняя часть колеса наклонена внутрь.
Плечо обкатки увеличивается, и из-за чего увеличивается влияние сил, воздействующих на колеса и на рулевое управление.
Рулевой механизм автомобиля
Рулевой механизм служит для преобразования вращательного движения рулевого колеса в поступательное прямолинейное движение, передаваемое к колесам. Для прямолинейного движения можно преобразовать вращательное движение рулевого колеса в качание рулевой сошки или создать возвратно-поступательное движение рейки рулевого механизма.
Кроме того, рулевой механизм обеспечивает понижающее передаточное число, благодаря которому уменьшается усилие, прикладываемое водителем для управления колесами. Это особенно необходимо, когда автомобиль неподвижен или медленно двигается, и вращение руля максимально затруднено.
Типовое понижающее передаточное число рулевого управления: от 14:1 до 22:1. При числах от 14:1 до 18:1, как правило, требуется усилитель рулевого управления. Для перемещения колес между предельными положениями, как правило, требуется повернуть рулевое колесо на 3-4 полных оборота.
Рулевой механизм должен быть достаточно прочным и выдерживать разные нагрузки, которым он подвергается в различных условиях движения. Водитель не должен ощущать через рулевое колесо толчки, сопровождающие движение. Существуют различные варианты конструкции рулевых механизмов, причем основных типов два:
- Рулевые механизмы с вращательным движением.
- Рулевые механизмы со скользящим движением.
Передаточное число рулевого управления
Передаточное число рулевого управления – это соотношение между углом поворота рулевого колеса и углом поворота колес. Передаточные числа могут быть постоянными и переменными.
Рулевое управление с постоянным передаточным числом именуется “линейным рулевым управлением”. При линейном управлении поворот руля на фиксированное количество градусов перемещает управляемые колеса на пропорциональный угол, зависящий от передаточного числа, при любом положении рулевого управления.
Рулевое управление с переменным передаточным числом именуется “пропорциональным рулевым управлением”. При пропорциональном управлении передаточное число изменяется с каждым поворотом рулевого колеса.
Как правило, по мере увеличения угла поворота руля скорость изменения угла поворота колес увеличивается. Передаточное число = Угол поворота рулевого колеса, разделенный на угол поворота колес (например, 160/8.8 = приблизительно 18:1).
Рулевой механизм типа «винт-гайка» с кольцами-ползунами
Кольца-ползуны, расположенные сбоку от рулевой гайки, передают перемещение гайки к рулевой вилке. Рулевую сошку устанавливают на вал, который сидит на рулевой вилке.
Износ винтовых рулевых механизмов этого типа, вызываемый трением, как правило, высокий и не поддается регулировке.
Передаточное число в случае механизма типа «винт-гайки» постоянное. Рулевая сошка, как правило, поворачивается на 90 градусов.
Червячно-секторный рулевой механизм
В червячном рулевом механизме этого типа на конце рулевого вала предусмотрен цилиндрический червяк, который перемещает зубчатый сектор. Преимущество червячных зубчатых механизмов заключается в том, что можно легко добиться высокого передаточного числа – до 22:1.
Зубья на зубчатом секторе находятся в постоянном зацеплении с червяком, любой поворот рулевого вала вызывает поворот зубчатого сектора. Рулевая сошка закреплена на зубчатом секторе и, как правило, может поворачиваться на 70 градусов.
Износ червячных механизмов этого типа относительно высокий из-за трения скольжения рабочих элементов, но их можно регулировать. Недостаток червячно-секторного механизма состоит в том, что водителю требуется прикладывать к рулевому колесу значительное усилие.
Червячно-роликовый рулевой механизм
В червячно-роликовом рулевом механизме для передачи движения от червяка вместо зубчатого сектора используется ролик. Червяк в этом механизме сводится на конус в направлении к центру, и образуется форма, напоминающая песочные часы (глобоидная).
Преимущество этой формы червяка заключается в том, что она позволяет ролику поворачиваться относительно своего центра, и это уменьшает размер рулевого механизма.
Рулевая сошка прикреплена к валу ролика и, как правило, может поворачиваться на 90 градусов. Передаточное число рулевого управления остается постоянным. Повышенные люфты можно устранить, отрегулировав положение рулевого вала.
Рулевой механизм с червяком и роликовым пальцем
Рулевой механизм с червяком и роликовым пальцем имеет цилиндрический червяк с неравномерным шагом. При вращении червяка конический палец перемещается в осевом направлении вдоль червяка.
Рулевая сошка закреплена на соответствующем вале, соединенном с пальцем, и, как правило, может поворачиваться на 70 градусов.
Износ рабочих элементов относительно низкий, люфт в рулевом вале и между пальцем и червяком регулируется. Передаточное число рулевого механизма с червяком и роликовым пальцем пропорционально изменяется вследствие неравномерного шага червяка.
Реечный рулевой механизм с постоянным шагом зубьев
В реечных механизмах для создания линейного перемещения рейки используется вращающаяся шестерня. Зубья шестерни находятся в постоянном зацеплении с зубьями рейки, и любое перемещение вала рулевой колонки вызывает поперечное перемещение рулевой рейки.
Перемещение рейки напрямую передается к рулевым тягам, установленным на обоих концах рейки. Шаровые шарниры, расположенные между рейкой и рулевыми тягами, обеспечивают возможность независимого вертикального перемещения рулевых тяг.
Рейка удерживается в зацеплении с шестерней с помощью подпружиненной прижимной колодки, которая автоматически регулирует любой зазор между зубьями. Трение скольжения между рейкой и шестерней оказывает амортизирующее действие и поглощает толчки при движении.
В числе преимуществ реечного механизма – прямое рулевое управление, функция самоцентрирования и низкая себестоимость. Реечный рулевой механизм – это самый распространенный тип механизма, применяемый в современных автомобилях. В реечном механизме с постоянным шагом предусмотрено постоянное передаточное число.
Реечный рулевой механизм с переменным шагом зубьев
Реечный рулевой механизм с переменным шагом зубьев работает так же, как и описанный выше реечный механизм с постоянным шагом. В этом рулевом механизме зубья на рейке имеют переменный шаг, причем в центре шаг больше, чем на краях.
Переменный шаг дает возможность увеличивать передаточное число рулевого управления по мере вращения шестерни. Фактически, в этой системе усилие, требуемое от водителя, тем меньше, чем больше поворачивается рулевое колесо.
При движении по прямой рулевое управление “тяжелее”, чем при повороте рулевого колеса в предельное положение; это облегчает маневрирование и парковку. В реечном механизме с переменным шагом предусмотрено пропорционально возрастающее передаточное число.
Усилитель рулевого управления
Устройство ходовой части автомобиля предусматривает несколько вариантов конструкций усилителей рулевого управления, отличающихся по устройству и работе.
По мере развития техники устройство усилителей рулевого управления все время совершенствовалось – на смену простым конструкциям пришли системы с электронными электроусилителями (ЭУР).
Только назначение усилителя рулевого управления осталось прежним – уменьшить усилие, прикладываемое водителем, при управлении транспортным средством.
Модульная конструкция
Типовая гидравлическая система усилителя оснащена жидкостным насосом, который служит для подачи рабочей жидкости под давлением в гидравлический контур. Насос может иметь электрический привод и находится в бачке усилителя рулевого управления или иметь механический привод от двигателя.
Механические насосы в усилителях, как правило, снабжены отдельным бачком для рабочей жидкости. Рабочая жидкость под давлением, созданным насосом, поступает в золотниковый распределительный клапан в рулевом механизме.
Когда рулевой вал находится в прямолинейном положении, рабочая жидкость проходит через золотниковый распределительный клапан и возвращается в бачок.
Когда водитель поворачивает рулевое колесо, золотниковый распределительный клапан направляет рабочую жидкость на соответствующую сторону поршня, который располагается в цилиндре на конце реечного механизма.
Тяга, подсоединенная к поршню, соединена с рейкой, и любое давление рабочей жидкости, воздействующее на поршень, способствует перемещению рейки. Рабочая жидкость с обратной стороны возвращается в бачок через золотниковый распределительный клапан.
Если водитель поворачивает рулевое колесо в другом направлении, происходит противоположный процесс. Если усилитель рулевого управления выходит из строя, сохраняется механическое действие рулевого механизма, однако водитель должен прикладывать гораздо большее усилие.
Полу-модульная конструкция
В полу-модульной системе поршень и цилиндр усилителя рулевого управления внешние, они тянут или толкают рулевые тяги.
По гидравлическому принципу действия усилитель рулевого управления полу-модульной конструкции сходен с усилителем модульной конструкции.
Если усилитель рулевого управления выходит из строя, сохраняется механическое действие рулевого механизма, однако водитель должен прикладывать гораздо большее усилие.
Полностью гидравлический усилитель рулевого управления
В полностью гидравлическом усилителе рулевого управления нет механической связи между рулевым валом и управляемыми колесами автомобиля. В дополнение к золотниковому распределительному клапану и жидкостному насосу предусмотрен управляющий насос.
Водитель активирует управляющий насос, поворачивая рулевое колесо. Гидравлическая жидкость поступает из рабочего насоса в управляющий насос. Когда управляющий насос активирован, рабочая жидкость направляется в золотниковый распределительный клапан.
Золотниковый распределительный клапан направляет рабочую жидкость к соответствующей стороне поршня. Поршень оснащен приводной тягой, которая непосредственно управляет рулевым приводом.
Рабочая жидкость на противоположной стороне поршня возвращается в бачок через золотниковый распределительный клапан. При неисправностях полностью гидравлической системы, приводит к полной неработоспособности рулевого управления.
Поэтому в автомобилях, оснащенных системой управления данного типа, необходим аварийный насос рулевого управления. Как правило, полностью гидравлическкую систему рулевого управления применяют на тракторах и в строительной технике, имеющих максимальную скорость не более 50 км/ч.
Рулевой привод
Рулевой привод служит для передачи усилия водителя через рулевое колесо, к управляемым колесам автомобиля. Рулевой механизм преобразует вращательное движение рулевого колеса в прямолинейное движение, которое тянет и толкает тяги рулевого привода.
Преобразованное движение передается от рулевого механизма к рулевому приводу. Шаровые шарниры на концах продольных и поперечных рулевых тяг обеспечивают возможность любых поворотных и вращательных перемещений в приводе.
Компоновка и количество поперечных рулевых тяг в рулевом приводе зависят от конструкции моста и подвески.
Односекционная поперечная рулевая тяга, перемещаемая рулевой сошкой
Простейшая конструкция рулевого привода – это односекционная поперечная рулевая тяга, перемещаемая рулевой сошкой, которая толкает или тянет продольную рулевую тягу для перемещения рычага, который соединен с поворотным шарниром на поворотном кулаке.
Поперечная рулевая тяга соединяет оба поворотных шарнира на поворотных кулаках передних колес автомобиля. Любое перемещение одного из поворотных шарниров передается через рулевую тягу к шарниру на противоположном поворотном кулаке.
Привод этого типа, как правило, применяется в автомобилях с жестким мостом, в которых расстояние между рычагами поворотных кулаков не изменяется. Для соединения продольной и поперечной рулевых тяг с рычагами поворотных кулаков служат шаровые шарниры.
Двухсекционная рулевая тяга, перемещаемая рулевой сошкой
Доработанный вариант односекционной рулевой тяги – это двухсекционная рулевая тяга, перемещаемая рулевой сошкой.
Сошка тянет или толкает две отдельные рулевые тяги, которые соединены с рычагами поворотных кулаков посредством шаровых шарниров.
Перемещение рулевых тяг поворачивает поворотные шарниры на поворотных кулаках. Привод этого типа, как правило, применяется в автомобилях с независимой подвеской, в которой поворотные шарниры могут перемещаться один независимо от другого.
Двухсекционная рулевая тяга, перемещаемая рейкой
В реечной системе рулевого управления для передачи рулевого воздействия к поворотным кулакам используются две тяги.
Хотя существуют рейки различных типов, на соединениях с поворотными кулаками в них применяются рулевые приводы похожей конструкции.
Прямолинейное перемещение рулевой рейки передается через шаровой шарнир на рулевые тяги.
Трех-секционная рулевая тяга, перемещаемая рулевой сошкой
Трех-секционную рулевую тягу перемещают рулевой сошкой, предусмотрен маятниковый рычаг, который передает движение рулевого управления к противоположной стороне автомобиля.
Рулевой привод этого типа применяют в автомобилях с независимой подвеской, но у этого варианта конструкции высокая стоимость.
Трех-секционная рулевая тяга, перемещаемая сошкой, обеспечивает самую высокую степень точности и максимальный контроль над рулевым управлением.
Амортизатор рулевого управления
Амортизаторы рулевого управления могут быть встроены в рулевой привод любого типа, но в автомобилях с реечным рулевым механизмом их применяют нечасто.
Амортизатор рулевого управления предназначен для амортизации толчков, которые при движении передаются на рулевой привод.
Амортизатор помогает противодействовать повышению усилия на руле и непреднамеренному перемещению рулевого колеса.
Поворотный шкворень
Поворотный шкворень – это центральный поворотный палец, установленный на поворотный кулак и обеспечивающий возможность поворота поворотного кулака. Расположение поворотного шкворня на поворотном кулаке – это важный параметр в геометрии рулевого управления, так называемый “поперечный наклон поворотного шкворня”.
Как правило, поворотный шкворень применяется в автомобилях с жестким передним мостом, в которых расстояние между рычагами поворотных кулаков не изменяется. Поворотными шкворнями традиционно оснащают более мощные коммерческие автомобили и внедорожники.
Поворотный шкворень требуется периодически смазывать, чтобы исключить риск заедания движущихся частей. В современных легковых автомобилях вместо поворотных шкворней применяют шаровые шарниры.
Шаровой шарнир
Шаровые шарниры обеспечивают элементам рулевого привода возможность свободного вращения относительно продольной оси шарнира и ограниченного движения в поперечном направлении. Опорой шарового шарнира служит чашка, которую, как правило, изготавливают из стали или пластика.
Шаровой шарнир набивают смазкой в процессе изготовления и, как правило, сервисное обслуживание не требуется. Если смазка вытекает, шаровой шарнир требуется заменить. В коммерческих автомобилях используют шаровые шарниры разных типов, в частности, подпружиненные и регулируемые.
Как правило, эти шаровые шарниры снабжены масленками для добавления смазки. Шаровые шарниры, устанавливаемые на поворотный кулак, заменили в легковых автомобилях поворотные шкворни, теперь они служат для поворота колес.
Упругие элементы подвески
К упругим элементам подвески относятся: пружины, листовые рессоры и торсионы. Пружины имеют минимальную возможную массу, однако они должны:
- Поддерживать массу автомобиля.
- Поглощать толчки при движении по неровностям дороги и преобразовывать их в плавные медленные колебания.
- Сводить к минимуму дисбаланс и устранять колебания относительно продольной и поперечной осей.
- Обеспечивать и поддерживать хорошее сцепление шин с дорожным покрытием.
- Контролировать высоту подвески и дорожный просвет.
Пружины необходимы для обеспечения безопасности и комфорта, при движении по неровной поверхности возникают толчки, они воздействуют на кузов через шины и подвеску и вызывают колебания в трех пространственных плоскостях. Вертикальные колебания демпфируются пружинами.
Пружины образуют эластичное соединение между подвеской и колесом с одной стороны и кузовом автомобиля с другой стороны. Хорошее сцепление шин с дорогой и комфорт движения достигаются при низких неподрессоренных массах, за счет большого хода пружин и перемещения колес под углом назад, при сжатии подвески.
Цилиндрические пружины
В современных легковых автомобилях чаще всего применяют цилиндрические пружины. Во многих автомобилях цилиндрические пружины пришли на смену листовым рессорам. Цилиндрическая пружина – это своего рода спиральный торсион. Если витки пружины свести на конус, она может иметь пропорционально возрастающий коэффициент жесткости.
Цилиндрические пружины не передают продольные и поперечные силы. По этой причине необходимы поперечные и продольные тяги, стойки или рычаги. На рисунке показаны основные размеры цилиндрической пружины.
Цилиндрические пружины имеют разную жесткость, отвечающую различным техническим требованиям. У цилиндрических пружин с постоянным коэффициентом жесткости одинаковое расстояние между витками. При сжатии цилиндрические пружины этого типа демонстрируют постоянный коэффициент жесткости.
В цилиндрических пружинах с пропорционально возрастающей жесткостью расстояние между витками разное. При сжатии цилиндрические пружины этого типа демонстрируют увеличение коэффициента жесткости.
При сжатии пружины верхние витки соприкасаются и становятся неактивными, вследствие чего жесткость пружины увеличивается. Как правило, в современных автомобилях применяют пружины именно этого типа, поскольку они наиболее эффективны на высокой скорости, а в остальное время обеспечивают плавное комфортное движение.
Постоянный коэффициент жесткости
В устройстве ходовой части автомобиля применяют различные виды пружин, где зависимость жесткости носит линейный или пропорционально возрастающий характер.
Если при постоянном увеличении нагрузки пружина сжимается с сохранением постоянства коэффициента жесткости, у нее линейная характеристика, коэффициент жесткости остается постоянным.
Все цилиндрические пружины по мере возрастания нагрузки сжимаются равномерно. Прогиб пружины равномерный и происходит в соответствии с линейной зависимостью.
Пропорционально возрастающая жесткость
Если при увеличении нагрузки пружина становится жестче, она имеет пропорционально возрастающую жесткость.
Для обеспечения постоянства увеличения деформации пружины требуется увеличение роста нагрузки.
Верхние витки входят в соприкосновение в первую очередь. Деформация пружины неравномерна и уменьшается по мере увеличения нагрузки.
Листовые рессоры
Листовые рессоры – это гибкие рессоры, как правило, состоящие из нескольких листов. Как правило, они устанавливаются продольно, но существуют и варианты поперечной установки. Листовые рессоры могут передавать продольные и поперечные силы.
Листовая рессора подсоединяется к шасси спереди посредством проушин. Изменение длины, вызываемое прогибом рессоры, компенсируется в задней части хомутом или роликовым подшипником.
Трапецеидальные или параболические листовые рессоры оснащаются листами неодинакового размера. Эти рессоры способны передавать движущие силы, силы торможения и поперечные силы и обладают высоким внутренним амортизирующим действием за счет трения между листами.
Они имеют короткий ход и небольшую высоту, но обладают большой массой и высокой грузоподъемностью. Эти рессоры практически не нуждаются в обслуживании (в зависимости от типа). В зависимости от варианта установки, они могут вызывать изменение колеи, развала или колесной базы.
Торсионы
Торсион – это стержень из пружинной стали, в котором при перемещениях подвески возникают скручивающие силы. В поперечном сечении штанга или труба может быть круглой или многогранной. Открытые или заключенные в направляющую трубу торсионы должны иметь тщательно обработанную поверхность.
Это исключит появление концентраторов напряжения, которые могут вызвать образование в торсионе трещин и его поломку. Торсионы могут быть расположены продольно или поперечно.
В торсионной подвеске на двойных поперечных рычагах торсионы располагаются параллельно кузову, благодаря чему их длину, а соответственно упругие свойства можно регулировать в широком пределе. Один конец торсиона крепиться к нижнему поперечному рычагу (реже к верхнему рычагу), другой конец – к раме автомобиля.
Данная конструкция торсионной подвески используется в качестве передней подвески легковых автомобилей повышенной проходимости – некоторых моделей американских и японских внедорожников. В торсионной подвеске на продольных рычагах торсионы соединены с продольными рычагами и, соответственно, расположены поперек кузова.
Данная конструкция торсионной подвески применяется в качестве задней подвески некоторых моделей легковых автомобилей малого класса. Особое место в конструкциях торсионных подвесок занимает т. н. торсионная балка или подвеска со связанными продольными рычагами.
Направляющим устройством данной подвески являются два продольных рычага, жестко соединенных между собой балкой. Продольные рычаги с одной стороны крепятся к кузову, с другой – к ступицам колес.
Балка имеет U-образное сечение, поэтому обладает большой жесткостью на изгиб и малой на кручение. Это свойство позволяет колесам двигаться вверх-вниз независимо друг от друга.
Торсионная балка в настоящее время широко применяется в качестве задней подвески передне-приводных автомобилей малого и среднего класса.
Благодаря своей конструкции подвеска с торсионной балкой занимает промежуточное положение между зависимым и независимым типом подвесок, поэтому другое ее название полунезависимая подвеска. Характеристики торсионов:
- не нуждаются в обслуживании;
- передают продольные и поперечные силы;
- позволяют регулировать предварительное нагружение;
- не обладают самодемпфированием;
- имеют линейный характер жесткости;
- имеют небольшую массу, но, как правило, довольно большую длину;
- чувствительны к дефектам поверхности (например, к ржавчине), которые могут уменьшать усталостную прочность и приводить к поломкам.
Эти же особенности характерны для стабилизаторов поперечной устойчивости, которые фактически являются торсионными пружинами.
Резиновые пружины
Пружины, изготовленные полностью из резины, как правило, применяют только в прицепах. В пассажирских автомобилях их используют в качестве дополнительных пружин.
На показанную полую резиновую пружину воздействуют силы сжатия и растяжения. На показанную торсионную резиновую пружину воздействует скручивающее усилие.
Характеристики резиновых пружин: могут передавать продольные и поперечные силы при сравнительно коротком ходе.
Характеристики упругости и демпфирования резиновых пружин изменяются в зависимости температуры. Эти пружины имеют пропорционально возрастающий коэффициент жесткости при малой массе и небольшой себестоимости изготовления.
Пневматическая подвеска
Воздушные или пневматические пружины применяются в грузовиках, автобусах и прицепах. Также возможно применение пневматических пружин на автомобилях представительского класса. Пружинящее действие обеспечивается за счет сжатия и расширения воздуха, нагнетаемого в сильфон пружины (пневмо-баллон).
В зависимости от нагрузки, клапаны управления высотой подвески с механическим или электронным приводом впускают или выпускают воздух из сильфонов. Таким образом, высота подвески и дорожный просвет автомобиля остаются постоянными при любых условиях.
Предусмотрен один или два клапана управления на каждый мост, но не более трех клапанов на автомобиль. Это исключает возможность опирания автомобиля только на две диагонально противоположные пружины.
Сжатый воздух подается в ресивер регулируемым потоком. Блок управляющих клапанов распределяет воздух к клапанам пружин. В блоке управляющих клапанов предусмотрен исполнительный рычаг, который служит для переключения между четырьмя настройками: «Движение», «Подъем», «Опускание» и «Останов». Это позволяет поднимать и опускать подвеску автомобиля.
Блок управляющих клапанов не допускает, чтобы давление в пневмо-баллонах падало ниже минимального уровня, из-за чего может возникнуть повреждение пневмобаллонов. Клапан пневматической подвески (регулятор высоты подвески) управляется посредством рычагов подвески.
Если автомобиль опускается из-за увеличения нагрузки, клапан пневматической пружины находится в положении «Открыто» до момента возврата автомобиля на средний уровень высоты.
При уменьшении нагрузки на автомобиль, рычажный механизм устанавливается в положение «Выпуск воздуха» до момента восстановления нормальной высоты подвески. В легковых автомобилях и грузовых автомобилях малой грузоподъемности для снижения себестоимости, как правило, применяют компрессоры с электродвигателями и электрические системы управления.
Пневматические пружины
Сильфон в виде диафрагмы, показанный на рисунке, формуется таким образом, что при прогибе подвески он мог скручиваться и раскручиваться вдоль воздушной камеры. Воздух внутри камеры сжимается при уменьшении размера камеры, что обеспечивает амортизацию перемещений моста.
Пружины этого типа имеют пропорционально возрастающую жесткость, которая увеличивается по мере роста нагрузки.
В легковых автомобилях и грузовиках малой грузоподъемности пневматические пружины могут дополнять или заменять традиционные стальные пружины на заднем мосту. Это обеспечивает управление высотой подвески, что позволяет противодействовать сжатию задних пружин, когда автомобиль загружен.
Гидропневматическая подвеска
Гидропневматическая пружина – это газонаполненная пружина с гидравлической передачей сил и гидравлическим управлением высотой подвески. Как правило, пружины заполнены газообразным азотом.
Гидропневматические пружины применяются в качестве основных или дополнительных пружин. Для управления высотой подвески выполняется закачка или выпуск масла из рабочей камеры между поршнем и газовой диафрагмой в сферическом аккумуляторе.
Клапан управления, расположенный на другом участке гидравлической системы, регулирует приток и отток масла.
Если поршень пружины оснащается клапанами, он также может выполнять функцию амортизатора. Характеристики гидропневматической подвески:
- пропорционально возрастающий коэффициент жесткости;
- контроль высоты подвески;
- может дополнительно выполнять функцию амортизатора;
- регулируемый дорожный просвет;
- требуется отдельная подача масла под давлением;
- новая заправка газа невозможна.
Амортизаторы
Пружины высокого качества работают с низким трением, это позволяет пружинам четко реагировать на мельчайшие неровности на поверхности дороги. Недостаток этой системы – тенденция к возникновению колебаний.
Если колебания происходят во время движения, возникает вертикальное перемещение кузова автомобиля и тенденция к «подпрыгиванию» колес на дорожном покрытии. Из-за этого изнашиваются шины, снижается комфорт и автомобиль выходит из-под контроля.
Фактически, амортизатор – это гаситель колебаний, он преобразует описанную нежелательную кинетическую энергию в теплоту. Преобразование энергии происходит за счет сопротивления, которое оказывает поглощающее действие, сглаживая колебания.
Сопротивление образуется за счет механического трения или за счет сопротивления потока рабочей жидкости. Для комфортного движения с уменьшенным колебанием пружин желательно использовать амортизаторы, более жестко реагирующие на отдачу, чем на сжатие пружин. Амортизатор должен:
- уменьшать колебания;
- предотвращать возникновение вертикального перемещения кузова автомобиля;
- способствовать поддержанию устойчивого контакта колес с дорожным покрытием;
- уменьшать износ шин и элементов шасси;
- способствовать поддержанию курсовой устойчивости, особенно на поворотах.
Фрикционные амортизаторы
На сегодняшний день фрикционные амортизаторы применяют редко. В основном их используют в мотоциклах.
Амортизирующий эффект достигается за счет трения между дисками, которые прижимаются один к другому регулируемыми пружинами.
Диски соединены с подрессоренной и неподрессоренной массой посредством шарнирных рычагов.
Фрикционные амортизаторы просты и дешевы в изготовлении и обслуживании. Амортизирующее действие при сжатии и обратном ходе одинаково сильное.
Из-за отсутствия защитного корпуса между фрикционными поверхностями может проникать грязь и влага.
Рычажный амортизатор
Рычажные амортизаторы – это гидравлические амортизаторы, редко используемые в современных автомобилях. Когда подвеска дает обратный ход, рычаг нажимает на поршень и увеличивает давление масла в рабочей камере, преодолевая усилие, создаваемое пружиной поршня.
Расход масла, перетекающего из рабочей камеры в верхнюю камеру ограничивается. Обратный ход притормаживается за счет сопротивления потока жидкости в демпфирующем клапане.
Когда подвеска сжимается при наезде на препятствие, пружина поршня отжимает поршень вверх. Масло беспрепятственно перетекает в рабочую камеру через клапан в поршне. Это означает, что рычажный амортизатор никак не влияет на перемещения при сжатии.
Однотрубный телескопический амортизатор
Однотрубный телескопический амортизатор часто называют газовым амортизатором. Это неверное название, но из-за него часто возникает предположение о том, что амортизатор заполнен только газом.
Амортизирующий эффект создает поршень, перемещающийся в масляной камере. Газовая полость служит в первую очередь для компенсации изменений объема камеры, вызванных перемещением поршня в трубе.
Масло, вытесняемое штоком поршня, посредством разделительного поршня сжимает газовую подушку. При перемещении штока вниз масляная камера увеличивается, и подушка сжатого газа снова отталкивает разделительный поршень вверх.
Другая функция газовой подушки – посредством разделительного поршня оказывать давление на масло, это помогает предотвратить вспенивание масла и обеспечить оптимальные характеристики даже при высокой нагрузке.
Этот амортизатор работает в любом положении и оказывает очень эффективное амортизирующее действие, происходит очень эффективное рассеивание теплоты, поскольку нет никакого резервуара вокруг масляной камеры. Это означает, что масляная камера более эффективно охлаждается воздухом, обтекающим автомобиль.
Отсутствие камеры резервуара позволяет увеличить диаметр амортизатора, благодаря чему увеличивается сопротивление и возрастает ресурс. За счет компоновки клапанов, можно точно настроить конструкцию амортизатора к конкретному автомобилю.
Двухтрубный телескопический амортизатор
В этой системе предусмотрены две трубы. Амортизирующее действие происходит внутри внутренней трубы. В этой трубе за счет трения происходит преобразование энергии движения в теплоту. Наружная труба образует резервуар, который выполняет важную функцию, вмещая в себя масло, вытесняемое из внутренней трубы.
Если труба перемещается вверх, масло через нижний клапан нагнетается в камеру резервуара. Когда внутренняя труба перемещается вниз, масло засасывается обратно из камеры резервуара в рабочую камеру. Двухтрубный телескопический амортизатор — это самый распространенный тип амортизатора, применяемый в современных автомобилях.
Эта конструкция обеспечивает хорошие амортизирующие характеристики в сочетании с долговечностью. Подбирая схемы расположения клапанов, можно точно подстроить конструкцию амортизатора к конкретному автомобилю. Пропорциональное увеличение амортизирующего эффекта достигается за счет большого рабочего хода и высокой скорости перемещения поршня.
При высокой интенсивности работы может возникать нежелательное вспенивание масла. Это может приводить к временному снижению амортизирующего эффекта. Двухтрубный телескопический амортизатор невозможно установить в любое положение.
Шток поршня должен располагаться вверху, а наклон амортизатора не должен превышать 45 градусов. Благодаря этому масло постоянно покрывает нижние клапаны внутренней трубы, и амортизатор сохраняет полную работоспособность.
Двухтрубный газонаполненный амортизатор
Двухтрубный газонаполненный амортизатор – это усовершенствованный вариант базовой двухтрубной системы, по конструкции он во многом сходен с двухтрубным телескопическим амортизатором, без газового подпора.
Различие состоит в газовой подушке, которая заполняет приблизительно одну треть пространства масляного резервуара. Газовая подушка находится под низким давлением и противодействует вспениванию масла.
Благодаря жесткой конструкции, двухтрубный газонаполненный амортизатор хорошо подходит для управления колесами при использовании с ними цилиндрических пружин. Давление в системе препятствует вспениванию масла, это обеспечивает очень эффективную амортизацию при любых условиях.
Общая длина меньше, чем у однотрубного амортизатора, поскольку амортизатор не удлиняется за счет газонаполненной камеры. Давление газа ниже, чем в однотрубном амортизаторе. Этот означает, что силы обратного хода, действующие на шток поршня ниже, поэтому возникает лишь небольшое увеличение демпфирующих сил.
Амортизаторы с переменной жесткостью
Амортизатор с переменной жесткостью – это специальный вариант двухтрубного газового амортизатора, его амортизирующие характеристики зависят от нагрузки на автомобиль.
В верхней половине рабочей камеры предусмотрены перепускные канавки, по которым амортизирующее масло может обтекать поршень. При небольшой нагрузке на автомобиль, поршень амортизатора работает в этой зоне и оказывает мягкое амортизирующее действие.
При большой нагрузке на автомобиль, поршень перемещается в нижнюю зону трубы амортизатора, в которой нет перепускных канавок, все масло проходит через клапаны амортизатора, и амортизирующий эффект становится жестче.
Стойка Макферсона
Стойка Макферсона – это конструкция, которая объединила точность положения колес, рулевого управления, пружинящие и амортизирующие свойства. Амортизатор, пружина и подвеска колеса образуют единый узел.
Поскольку амортизатор используется для задания положения колеса и удерживания поворотного кулака, однотрубные и двухтрубные амортизаторы можно использовать только в усиленном варианте.
Некоторые стойки Макферсона можно обслуживать. Можно устанавливать в стойки сменные картриджи для замены поврежденных элементов.
Заключение
Ознакомившись с конструкцией рулевого управления и подвески автомобиля, узнав об основных узлах и деталях, Вы теперь знаете устройство ходовой части автомобиля – пройден первый шаг получения специальных знаний автомеханика. Без владения этой информацией не возможны диагностика и ремонт ходовой части авто.
Для диагностики и ремонта подвески и рулевого управления, также, необходимы сведения по техническим характеристикам и технологии замены неисправных деталей конкретного автомобиля. Чтобы избежать серьезного ремонта, вовремя проводите техническое обслуживание своего транспортного средства.
Исправная система рулевого управления автомобиля – залог безаварийной эксплуатации авто и безопасности дорожного движения. Поделитесь в комментариях, как часто Вы проверяете ходовую часть, и подписывайтесь на рассылку новых статей, чтобы ничего не пропустить.
Источник https://extxe.com/17530/diagnostirovanie-i-to-hodovoj-chasti-avtomobilja/
Источник https://techautoport.ru/hodovaya-chast/rulevoe-upravlenie/rulevoe-upravlenie-avtomobilya.html
Источник https://lesovoj.ru/rulevoe-upravlenie-i-podveska/